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1. Introduction 
1.1. Health technology assessment 

As healthcare costs have been rising in the past decades1, governments worldwide 
have come with measures to curb increasing costs. This led to the rise of the field 
of pharmaco-economics, a field that relates the costs of drugs to the clinical 
outcomes experienced by patients2. Although this field has its roots in the 
assessment of medication, this can be applied to all health technologies. These 
economic evaluations usually relate the costs associated with the implementation 
of a health technology to a generalizable patient outcome, such as quality-adjusted 
life years (QALYs). Increasingly, other factors have also received attention regarding 
the implementation of health technologies, such as patient preferences, 
organization of the healthcare system and ethics; all these factors that can either 
promote or restrain a new intervention from being implemented, are assessed in a 
Health Technology Assessment (HTA). 

HTA has been defined as a multidisciplinary process that uses explicit methods to 
determine the value of a health technology at different points in its lifecycle, with 
the purpose to inform decision-making in order to promote an equitable, efficient 
and high-quality health system3. This is an interdisciplinary field which has 
increasingly become important in making decisions related to interventions in 
healthcare and ensuring a sustainable health system. Globally, there are many 
guidelines on how to perform an HTA; for Europe the HTA Core Model has been 
developed which covers nine domains4.   
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Table 1 shows how these domains are relevant for the assessment of diagnostics. 
Through HTA, the use and reimbursement of tests in clinical practice can be 
evaluated. However, the HTA process for diagnostics has been lagging behind 
compared to, for example, the process for pharmaceuticals5. Diagnostics are more 
complex to assess as the clinical outcomes will depend on the treatment options 
following the test results.  
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Table 1 health technology assessment domains in relation to diagnostics (general 
domains adapted from Kristensen et al. 4) 

Domain4 Test characteristics 
Health problem and current use 
of technology 

Explanation of disease related to the 
biomarker that should be detected 

Description and technical 
characteristics 

Use of the test (by a lab technician, clinician, 
or patient) and characteristics such as 
sensitivity and specificity 

Safety Safety of performing the test 
Clinical effectiveness The effects on patient outcomes 
Costs and economic evaluation The cost-effectiveness of the test 
Ethical analysis Ethical considerations can vary, depending on 

the disease area and group that should be 
tested 

Organizational aspects The full pathway from taking a test sample to 
communicating and acting on the test result 

Patient and social aspects Patient preferences related to the performed 
diagnostics, also in relation to their social 
environment 

Legal aspects Laws and regulations, such as the IVDR 
IVDR: in-vitro diagnostics regulation 

1.1.1. Generalizable outcomes 

In most economic evaluations in healthcare, the costs of a new medical technology 
are compared to the clinical effects, usually expressed as QALYs. QALYs combine 
the length of life, i.e., life years gained, and the quality of life. The quality of life 
usually is between 1 and 0, ranging from perfect health to death. The most-used 
outcome in cost-effectiveness analyses (CEAs) is the incremental cost-effectiveness 
ratio (ICER), the costs divided by the clinical effects. The ICER can then be related 
to a willingness to pay (WTP), which varies between countries. A strength of these 
analyses is that the effects of the intervention can be extrapolated beyond the time 
horizon usually captured within a clinical trial. Short-term clinical outcomes, such 
as the disease duration and effectiveness of treatment, usually can be captured in 
clinical trials, while long-term outcomes, such as life years gained, can be captured 
in post-market surveillance, or extrapolated using health-economic methods. For 
this purpose, health-economic models, in which individual patients or patient 
cohorts are followed for a certain period, are used. The modelled follow-up period 
varies between countries; e.g., the Dutch guidelines recommend a lifetime horizon, 
where patients are simulated for the remainder of their life6. Various costs should 
be considered, of course the costs directly related to the intervention, but in some 
countries also productivity losses or costs accrued elsewhere in the healthcare 
system.  
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1.1.2. A new regulatory framework 

To improve patient safety, two European regulations have been launched in recent 
years: the medical device regulation (MDR) and in-vitro diagnostics regulation 
(IVDR). Especially for products that are qualified as high-risk products, including  
diagnostic tests for severe diseases, stricter safety requirements for gaining market 
entry are implemented and post-market surveillance is required. Also, more 
elaborate evidence on the clinical effectiveness of these health technologies will 
be required7. Under the previous legislation, there was a focus on technical 
standards, for diagnostics this may concern the sensitivity and specificity of a test8. 
Under the new regulations, clinical data needs to be collected, meaning that the 
relevance to the patient of the test result needs to be assessed. Especially for high-
risk devices, more data will be available on the effectiveness of new medical devices 
and in-vitro diagnostics. This all brings these devices more in line with regulations 
introduced for pharmaceutical products in the 1960s. 

1.2. Health-economic considerations related to antimicrobial 
resistance 

Governments worldwide have made it a priority to counter AMR, covered in the 
global action plan on AMR from the World Health Organization, covering five 
objectives9:  

1| Improving the awareness and understanding of AMR, by educating the public 
from a young age, but also improving AMR-related education for professionals 
in healthcare and the veterinary sector.  

2| Strengthening surveillance and research, including more epidemiological data 
on AMR, but also more economic research on the costs of AMR and cost-
effectiveness of AMR-reducing interventions.  

3| Reducing the number of infections, both in healthcare, in the community and in 
the veterinary sector, through infection prevention, education and vaccines. 

4| Optimizing the use of antimicrobial medicines, by collecting more data on 
antibiotic use, introducing effective diagnostics and improving the rational use 
of antibiotics. 

5| Developing an economic case for sustainable investment in new medicines, 
affordable diagnostics and vaccines, including analysing the costs of the burden 
of AMR. 

Collaboration across disciplines is important to reach these goals: medicine, 
microbiology, economics, sociology and agriculture, but also, collaboration across 
governments, both locally and globally; and across the public and the private 
sector. Within the health sector, this translates to various stewardship models10. 
Antimicrobial stewardship entails a collaboration between physicians, pharmacists 
and microbiologists on appropriate and timely diagnostics, empirical therapy based 
on up-to-date local epidemiology and streamlined personalized therapy. In 
addition, infection prevention stewardship considers hygienic measures to prevent 
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the spread of resistant bacteria and surveillance. In healthcare settings, patients 
carrying a resistant bug should be identified in an early stage and isolated to 
protect other patients. Finally, diagnostic stewardship makes sure the right 
diagnostic is performed at the right time. Rapid diagnostics can enable a 
theragnostic approach for antibiotic prescriptions, where targeted antibiotics are 
prescribed to patients within hours. Containing the spread of resistant organisms, 
preventing the use of unnecessary antibiotics and more targeted antibiotic 
treatment are required to combat AMR, and in all these processes, microbiological 
tests play a vital role.  

In economic terms, AMR can be regarded a negative externality associated with the 
consumption of antimicrobials11,12. When taking an antibiotic, patients 
(understandably) prioritize their own health as opposed to the long-term effects on 
society.  For a clinician, it usually is more important to treat the currently-consulting 
patient than to prevent potential (and highly uncertain) health losses caused by 
AMR in the future. AMR is an interpersonal issue, as it affects not only the individual 
taking antibiotics, but also surrounding people11. In many ways, there is a similarity 
to the issue of climate change, where individuals responsible for carbon emissions 
do not bear the cost of climate change in the future13. Both AMR and climate change 
are global issues, where nations responsible for antibiotic consumption or carbon 
emissions may not be hit hardest by the outcomes. Both issues are also inter-
generational in nature, as the potential effects of AMR and climate change are long-
term problems11. 

 

1.2.1. Previous incorporation of antimicrobial resistance in health-
economic analyses 

In deliverable 5.1 of VALUE-Dx, we reviewed previously published literature related 
to health-economic diagnostics of infectious diseases and their inclusion of AMR. 
Of the 159 included articles, 29 included in the model the appearance of 
antimicrobial resistance, among them eight articles related to respiratory tract 
infection disease14–21, another nine to tuberculosis specifically22–30,  and another two 
to influenza specifically21,31. 

In respiratory tract infections disease articles AMR was included into the model 
mainly modifying the cost per antibiotic prescription (applied to 5 of the 6 papers). 
Oppong et al.32 Zang et al.33 and Holmes et al.15 added a fixed cost for every antibiotic 
prescribed. This cost was based on annual cost of resistance in USA ($55 billion), EU 
(€1.5 billion) and total global resistance over a 35-year period ($2.8 trillion 
annually). Thus, the calculations were simple as authors divided the previous costs 
by the annual number of prescriptions in each region. Schuetz et al.18 and Stojanovic 
et al.19 also followed this method but they calculated the daily costs of antibiotic 
resistance by dividing the cost per prescription by the average duration (number of 
days) of a typical antibiotic treatment. Similarly, Michaelidis et al.16 assumed that 
the intrinsic value of an antibiotic prescription safely avoided would equal the 
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health care system cost of antibiotic resistant infections attributable to that 
antibiotic prescription. In pneumonia one article also paid attention to costs. In Ost 
et al.34 authors consider antibiotic use and survival rate simultaneously. They use 
the number of antibiotic days per survivor to report ICER so antibiotic use was 
viewed as a cost (in terms of promoting antibiotic resistance). A drawback of these 
methods is that they imply to consider that the antibiotic prescription in 
ambulatory care is the main cause of resistance dissemination while in real practice 
it depends on several aspects. For instance, the World Health Assembly global 
action plan as described above outlines five objectives35, only one of them is to 
optimize the use of antimicrobial medicines in animal health36.  

Another approach to introduce AMR into the model was decreasing the efficacy of 
the treatment as the rate of resistance increases. Balk et al.14 decreased the efficacy 
of the antibiotic compared to placebo to simulate an increasing AMR to amoxicillin 
in a paper of respiratory tract infection. Recently, studies aimed at determining the 
incidence of infections with resistant bacteria are arising. In this sense, we have 
found a study that used prevalence data from European Centre for Disease 
Prevention and Control (ECDC) to determine the annual burden of infection with 
antibiotic-resistant bacteria37.  

Some tests can detect if the pathogen is resistant to any antibiotic so the treatment 
could be adjusted in advance. In Dinh et al.38 tests can yield not only positive or 
negative results in terms of diagnosing community-acquired pneumonia but also it 
can perform a microbiological identification. If S. pneumoniae was found, the 
treatment prescribed had a narrowed spectrum, which can reduce the probability 
of AMR. Also, in two sepsis articles test can differentiate among Staphylococcus. 
Brown et al.39 test can detect and differentiate between methicillin-susceptible and 
methicillin-resistant S. aureus and in Harrison et al. the model included an extra 
empiric therapy (vancomycin) for possible methicillin-resistant Staphylococcus 
aureus. Similarly, in Steuten et al.40 the duration of the antibiotic treatment was 
calculated based on the level of concentration of a procalcitonin test.  

Another approach to introduce AMR into the model is the need of prescribing a 
second treatment in case of failing first treatment. This was not found for papers 
looking into respiratory tract infections, but Rothberg et al.41, analysed urinary tract 
infection diagnostics. In their analysis a patient may fail empiric antibiotic therapy 
either because of misdiagnosis or antibiotic resistance. In the latter case, an initial 
culture result confirms the diagnosis, allowing immediate treatment with another 
antibiotic. When resistance is low, few patients fail therapy. When resistance 
increased the percentage of patients failing empiric therapy increased, and more 
benefited from urine culture. They found that for patients with pyuria who failed 
therapy, it was best to immediately retreat with a quinolone, without waiting for a 
culture result. For strategies that did not include immediate retreatment, initial 
urine cultures for pyuria were much more cost-effective. 
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In an influenza related article, authors assumed a given rate of resistance in 
circulating influenza virus. Lavelle et al.31 create a primary scenario in which 
prevalence of oseltamivir resistance was 29%. In the absence of any drug resistance, 
treatment would shorten the duration of uncomplicated influenza symptoms by 36 
hours. For the proportion of children infected with a resistant virus, no clinical 
benefit from treatment will be received. Results found that testing maintains a more 
favourable cost-effective profile for a higher prevalence of oseltamivir-resistant 
viruses compared with the empiric treatment strategy. However, this approach can 
only consider one type of resistance (caused by the H275Y mutation). 

All of the previous authors included AMR into the model based on different 
hypotheses, such as that AMR was only caused by human antibiotic prescription. In 
practice, national and international programs against the emergence of antibiotic 
resistance fight this phenomenon from the fields of human and veterinary health35. 
However, as indicated in the methodology of the deliverable 5.1, articles on animals 
were excluded. Also, it was considered that a reduction in antibiotic prescription 
had an equal-direct effect (i.e. one-on-one) to reduction of AMR. In reality, this 
consumption-resistance elasticity may not be linear (for example, it seems 
plausible that if the consumption of antibiotics is reduced by a certain amount 
thanks to the introduction of a RDT, the resistance will be reduced by a smaller 
proportion)42.  

 

1.3. Aims 

In this deliverable, we describe a health-economic model that can be used to 
investigate the long-term effects of the implementation of diagnostics for 
community-acquired acute respiratory tract infections (CA-ARTI), from a public 
health and economic perspective. The aim is to go beyond the trial setting as 
described in Deliverable 5.4 and to consider the country-wide impact, with a focus 
on AMR. 

ICERs and QALYs are important indicators adopted by payers to assess the value 
of novel health innovations. In our health-economic framework, we describe 
considerations that are specific for diagnostics to derive these indicators. We also 
aim to perform a detailed analysis on health state utilities and QALYs in the 
PRUDENCE trial that can inform future research in the field of CA-ARTI. 

Finally, we aim to estimate the budget impact of the implementation of novel 
diagnostics that reduce antibiotic prescriptions, which may be relevant in the 
context of affordability of these diagnostics.  
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2. Health-economic framework for 
diagnostics 
Over the past decades, policy makers in the healthcare sector have tried to control 
the rising costs of pharmaceuticals in different ways43,44. As one approach, value-
based pricing of new drugs aims to maximize the health-related and economic 
outcomes given a pre-specified WTP: this has become a widespread method in 
many countries to assess the pricing and reimbursement of new pharmaceuticals 
entering the market45,46. In recent years, attention has expanded towards 
companion diagnostics for innovative treatments as well: highly specialized 
diagnostic tests paired to a specific drug in the context of what is labelled 
personalized medicine47,48. Personalized medicine entails that drugs are targeted 
more to specific patient subgroups, with the aim of reducing the uncertainty of 
whether the drug will be effective before administration and correspondingly 
improve cost effectiveness of the drug considered.  

Diagnostic tests are used more widely in modern medicine than just as companion 
diagnostics, and often in less well-defined populations. Examples include C-
reactive protein (CRP) tests to check whether a patient with cough has a viral or 
bacterial infection, an International Normalized Ratio (INR) test to diagnose 
bleeding disorders or an HbA1c test for diabetes. Many national pharmacoeconomic 
guidelines nowadays also consider the assessment of non-pharmaceuticals, such 
as diagnostics, although in practice, these analyses are not as common49. There is 
limited evidence on pricing and reimbursement policies of diagnostics50,51. 
Deliverable 5.2, on pricing and reimbursement policies related to diagnostics in 
various European countries, concluded that health technology assessment is rarely 
used for diagnostics50. We believe the role of cost-effectiveness of diagnostic 
methods will increase in the coming years, but with that, certain challenges will 
arise. 

Compared to pharmaceuticals, for which the market entry regulations are well 
established for various jurisdictions44, the evidence for diagnostics, and medical 
devices in general, is very limited50. With the introduction of the IVDR (see also 
section 1.1.2) IVD companies will need to collect more data on the technical and 
clinical performance of new devices before market entry and also increase post-
market surveillance52. Consistent and high-quality data will provide healthcare 
professionals and policy makers with more tools to assess the safety and 
effectiveness of new IVDs in clinical practice. We expect this will also lead to an 
increase in cost-effectiveness analyses (CEA) of these devices. Diagnostics are not 
limited to IVDs; software or devices used for the diagnosis of a disease fall under 
the EU regulation on medical devices (MDR)53 which is very similar52. An example for 
this would be a smartphone app used by clinicians to determine the most likely 
disease and optimal treatment, based on a patient’s symptoms. 
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Compared to pharmaceuticals there are major differences when assessing the 
clinical value of a diagnostic strategy. The accuracy (i.e. sensitivity and specificity) 
of a diagnostic needs to be adequate, but more important for its cost-effectiveness 
is the clinical utility54. The added value of the diagnostic in clinical practice will 
depend on the background incidence in the population that is tested, affecting 
metrics such as false positives and negatives. Additionally, it is important to 
consider how the diagnostic can be combined with other tests in diagnostic 
algorithms, either sequentially or simultaneously55.  Finally, while pharmaceuticals 
directly influence patient outcomes, most diagnostics do not55,56; hence, the cost-
effectiveness of a diagnostic is highly dependent on the cost-effectiveness of the 
treatment that follows and any lifestyle changes a patient may make. For example, 
a relatively expensive test to inform the prescribing of inexpensive treatment, as is 
often the case with antibiotics, has a negative effect on the cost-effectiveness. 
Additionally, screening for resistant bacteria may seem even worse considering the 
cost-effectiveness: many patients carrying a resistant bacterium do not experience 
any negative effect, but if a resistant bug is found in a hospitalized patient, this 
patient needs to be placed in costly patient isolation57.  

For an overview of some important determinants of the cost-effectiveness of 
diagnostics, see Figure 1.  

 

 

2.1. Testing patients: a definition of diagnostics 

The word “diagnostics” is often used interchangeably with the word “tests”. For 
health-economic analyses, it is important to make the distinction between various 
types of tests used for individual patients: screening, diagnosing and monitoring. 
Although similar or identical tests may be used for each of the strategies, the 

Diagnostic 
technology 

performance

• Technical 
performance:
• Sensitivity
• Specificity

• Clinical performance
• True 

positives/negatives
• False 

positives/negatives

Added value 
within diagnostic 

path (or 
algorithm)

• Performance of other 
diagnostic tests

• Combination with 
other tests
• Simultaneously
• Sequentially

Disease 
management

• Treatment options
• Lifestyle changes

Short-term 
outcomes

• Duration of disease
• Severity of disease 

(quality of life)
• Treatment (cost-

)effectiveness
• Often captured in 

clinical trials

Long-term 
outcomes

• Complications 
patients have over 
their life course

• Captured in post-
market surveillance

• Extrapolation beyond 
the trial horizon 
using health-
economic methods

Figure 1 determinants of cost-effectiveness of diagnostics 
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decision problem related to the various strategies are quite different, hence each 
strategy presents unique challenges when designing a CEA. 

2.1.1. Screening 

Screening tests are applied to a broad population, for example screening all school-
going children for growth defects, breast cancer screening for all women from the 
age of 50 or screening all patients for vancomycin-resistant Enterococcus on the 
gastroenterology ward. The aim is to find disease in a defined population, in people 
without, or unaware of, symptoms58. Especially for diseases with better outcomes if 
treatment is started at an early stage, screening can be beneficial. A common 
example is cardiovascular risk management, which aims to place patients in a risk 
category based on a combination characteristics, such as sex, age and smoking 
behaviour, and simple diagnostic tests: blood pressure and cholesterol tests59. 
Lifestyle advice and treatment to lower cholesterol levels and blood pressure are 
aimed to prevent, among others, future cardiovascular disease, diabetes and 
chronic obstructive pulmonary disease (COPD). 

2.1.2. Diagnosing 

With diagnostics the aim is to identify the most likely cause of, and optionally 
optimal treatment for, a previously undetected disease in a clinically-suspect 
patients who is seeking care60,61. This concerns patients that experience complaints 
and consult a clinician who can hopefully prescribe a cure. This could be a person 
with a persistent cough, or a patient with shortness of breath after exercise. In the 
Netherlands and other countries where the general practitioner (GP) acts as a 
gatekeeper to the health system, the GP has an important role in determining 
whether a patient requires immediate treatment, should be referred to specialist 
care, or can wait for the complaints to fade without treatment. Next to clinical 
experience, GPs can use clinical rules and diagnostic tests to aid in this decision 
process. An example of a test commonly used to diagnose patients is a C-reactive 
protein (CRP) test, which can be used in the GP office for patients consulting for 
respiratory complaints. The CRP test can be used to discriminate between a viral 
and a bacterial infection and can inform the GP and patient on the decision to 
prescribe an antibiotic. An example of a clinical score, is a scoring system for deep-
vein thrombosis (DVT) developed by Wells et al., during clinical assessment, patients 
can be stratified in three risk categories during clinical assessment: low, moderate 
and high62. Patients in the high-risk group have an 85% risk of DVT, compared to 5% 
for the low-risk group. In the case of personalized medicine, having diagnosed a 
disease may not be sufficient to initiate treatment; especially if the treatment can 
cause severe adverse reactions or is very expensive, as is often the case in oncology 
for example. Companion diagnostics are used to predict whether a specific 
treatment option will be beneficial for an individual patient47. For example, a test to 
check whether a mutation is present in a tumour so that this can be targeted by 
antibody treatment. 
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2.1.3. Monitoring 

Finally, there is monitoring, where a patient is tested periodically to assess a certain 
biomarker. A classic example is the monitoring of blood glucose levels for diabetes 
patients or international normalized ratios (INR) for patients on anticoagulation 
therapy. An extreme example would be a patient admitted to the intensive care unit, 
who is monitored for countless vital signs. As many diseases are chronic in nature, 
monitoring systems are important in treatment optimization and  disease 
management63.  

2.2. Recommendations for the design and reporting of diagnostics 

Our work within and outside the VALUE-Dx consortium has allowed us to identify 
specific gaps in the design and reporting of health-economic analyses of 
diagnostics64. This has led us to draft recommendations linked to best practices in 
the field. Already, excellent recommendations are available to aid in the design and 
reporting of economic evaluations. The Consolidated Health Economic Evaluation 
Reporting Standards (CHEERS) statement is a collection of 24 recommendations 
aiding in the reporting on methods and results of economic analyses for 
interventions in healthcare65. CHEERS is not tailored to any specific intervention and 
can be used for preventive measures, diagnostics and treatment65. The International 
Decision Support Initiative’s reference case for economic evaluation provides 
eleven principles to guide the conduct and reporting of economic evaluations to 
improve their methodological quality and transferability66.  The methodological 
specifications relate to the health outcomes used, the estimation of costs and 
transparency, among others. 

However, due to their broad scope, these recommendations do not provide specific 
guidance for diagnostic strategies. We link this diagnostic-specific guidance to the 
related items of the more general CHEERS statement and the reference case65,66, to 
enable other researchers to use this guidance in addition to the already available 
recommendations. 

2.2.1. Overview of recommendations 

An overview of our recommendations is displayed in Table 1, including related 
CHEERS recommendations65 and specifications from the reference case for 
economic evaluations66. The recommendations are explained in more detail below. 
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Table 2 recommendations for CEAs of diagnostics, including direct quotations of relevant CHEERS recommendations65 and 
reference case specifications66 

Topic CHEERS 
recommendation65 

Reference case specification66 Diagnostic-specific recommendation Relates to 

Target 
population 

Describe 
characteristics of the 
base case population 
and subgroups 
analysed, including 
why they were 
chosen. 

The decision problem must be 
fully and accurately described. 

Specify the target population of the 
test, including the symptoms patients 
experience and other relevant 
determinants which may influence 
the clinician when diagnosing 
patients. Clearly state whether the 
aim of the intervention is to screen, 
diagnose or monitor patients. 

Reporting 

Setting and 
location 

State relevant aspects 
of the system(s) in 
which the decision(s) 
need(s) to be made. 

The decision problem must be 
fully and accurately described. 

Specify the clinical setting in which 
the clinician operates, and where the 
diagnostic test is performed. Factors 
impacting the decision for patients to 
seek care and factors influencing the 
disease prevalence are important 
aspects that may influence the cost-
effectiveness of a diagnostic. The 
location where the diagnostic is 
performed may impact the costs and 
time to obtain a test result and 
subsequently its value within the 
diagnostic pathway. 

Reporting 

Comparators Describe the 
interventions or 
strategies being 

Current practice in context of 
decision problem to serve as 
comparator in the analysis. 

Specify the diagnostic algorithm, 
including clinicians’ decision 
processes (decision to perform the 

Reporting 
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Topic CHEERS 
recommendation65 

Reference case specification66 Diagnostic-specific recommendation Relates to 

compared and state 
why they were 
chosen. 

Best supportive, 
noninterventional care in 
context of decision problem 
should be explored as 
comparator as additional 
analysis. 

test), the diagnostic tests (including 
brand, type and frequency), and the 
relevant treatment options (the 
outcome of the diagnostic algorithm).  
 

Time horizon State the time 
horizon(s) over which 
costs and 
consequences are 
being 
evaluated and say 
why appropriate. 

Lifetime time horizon should 
be used in first instance. 
A shorter time horizon may be 
used when shown that all 
relevant costs and effects are 
captured. 

The assessed time horizon should be 
similar to the time horizon over which 
costs and consequences of treatment 
following the diagnostic process are 
typically evaluated. 

Design 

Choice of 
health 
outcomes 

Describe what 
outcomes were used 
as the measure(s) of 
benefit in the 
evaluation and their 
relevance for the type 
of analysis performed. 

Methodological choices 
include either DALYs averted 
or QALYs gained. 

Include either QALYs or DALYs when 
assessing the cost-effectiveness of 
diagnostics. However, depending on 
the diagnostic technique and disease, 
other outcomes may be relevant to 
assess the value of the assessed 
diagnostic algorithm (e.g., adherence-
improving factors, insurance value or 
real options value). 
 

Design 

Estimating 
resources and 
costs 

Describe approaches 
and data sources 
used to estimate 
resource use 
associated with model 
health states. 

Estimates should reflect the 
resource use and unit 
costs/prices that may be 
expected if the intervention is 
rolled out to the population 

Consider the economy (or 
diseconomy) of scale related to 
collecting, transporting and 
performing more (or fewer) tests on 
the same equipment, as opposed to a 
fixed price per test.  

Design 
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Topic CHEERS 
recommendation65 

Reference case specification66 Diagnostic-specific recommendation Relates to 

Describe primary or 
secondary research 
methods for valuing 
each resource item in 
terms of its unit cost. 
Describe any 
adjustments made to 
approximate to 
opportunity costs.* 

defined in the decision 
problem. 
Analysis should include 
estimation of changes in cost 
estimates due to economies 
(or diseconomies) of scale. 

Incremental 
costs and 
outcomes 

For each intervention, 
report mean values 
for the main 
categories of 
estimated costs and 
outcomes of interest, 
as well as mean 
differences between 
the comparator 
groups. If applicable, 
report incremental 
cost-effectiveness 
ratios. 

No specification Use an efficiency frontier to visualize 
the incremental costs and outcomes 
of the different strategies, if several 
diagnostic algorithms are assessed 
simultaneously. 

Reporting 

Affordability 
and 
reimbursement 

No recommendation Costs of all resource 
implications relevant to the 
decision problem, including 
donated inputs and out-of-
pocket inputs from 
individuals. 

Define the perspective of the 
economic evaluation and identify 
which payers are included in the 
budget impact analysis. Calculate the 
budget impact of implementing the 
assessed diagnostic algorithm within 
the overall clinical care pathway and 

Design 
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Topic CHEERS 
recommendation65 

Reference case specification66 Diagnostic-specific recommendation Relates to 

Budget impact analysis should 
estimate the implications of 
implementing the intervention 
on various budgets. 
Equity implications should be 
considered at all stages of the 
evaluation, including design, 
analysis, and reporting. 

consider setting-specific 
reimbursement regulations 

*: for model-based economic evaluations, Husereau et al. also provide a separate recommendation for single study-based economic evaluations 

CEA: Cost-Effectiveness Analysis; CHEERS: The Consolidated Health Economic Evaluation Reporting Standards; DALY: Disability-Adjusted Life Year; QALY: Quality-Adjusted Life Year 
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2.2.2. Target population 

A common way to specify a certain population in the medical field is to identify 
patients having a specific disease: for example, heart failure patients or patients 
with neuroendocrine tumours. Especially in clinical trials, these specifications often 
are extended with patient characteristics such as age and comorbidities or with 
ranges of disease-specific biomarkers. When diagnosing a patient, a specific 
disease often is not yet known, however, the symptoms are. These specific 
symptoms will influence the clinician’s decision to request additional diagnostic 
tests or use point-of-care (POC) diagnostics. Other determinants a clinician may use 
in deciding to use certain diagnostics include age, comorbidities and, if available, 
vaccination status.  

Therefore, when specifying the target population of a diagnostic intervention, it is 
highly important to specify the symptoms patients have and other relevant 
determinants which may influence the clinician’s decision to continue diagnosing a 
patient. Additionally, it should be clear whether the patient population is screened, 
diagnosed, or monitored. However, this may be more difficult in the case of genomic 
tests, with potential spillover effects to relatives, where the population of interest 
is broader than just the patient tested67: the diagnosis of one patient may lead to 
the screening of family members or inform reproductive planning. 

2.2.3. Setting and location 

Linked to the target population are the setting and location. Populations presenting 
in primary care are different from patients who are referred to hospital care, who 
are different from patients admitted to the intensive care unit. In a healthcare 
system where the general practitioner (GP) has a gate-keeping role, a decision 
based on clinical experience to refer a patient to a hospital, without performing any 
test, already should be regarded as a diagnostic intervention. The probability of 
having a disease will be higher in the hospital setting, considering the GP does not 
refer everyone and does not refer at random. Not all health systems rely on the 
gate-keeping role of the GP68 and also factors for patients seeking care differ 
culturally69. These factors will have an influence on the prevalence and severity of 
diseases at different settings within the healthcare sector. Hence, this context is 
important to include when describing the setting in which diagnostic tests are 
performed.  

Currently, the majority of clinical tests are performed in hospitals and diagnostic 
laboratories, although the exact setting varies between countries70. In some 
countries, centralized, external laboratories have focussed on scale: by improving 
efficiency, the costs per test can be reduced. Although the large-scale laboratories 
place the tests further away from patients, there is also an opposite trend: point-
of-care (POC) tests and self-tests bring the tests closer. These tests can provide 
information on the cause of disease or the effectiveness of medication within 
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minutes and immediately inform the shared decision-making process of the 
clinician and patient. This knowledge can lead to improved treatment decisions and 
also to better adherence63. Although these POC tests are more expensive than the 
equivalent tests performed in large-scale laboratories, these patient-level 
improvements may make them a worthwhile investment: to make this decision, 
health technology assessment (HTA) can play an important role. Clearly specifying 
the location of sample collection and analysis is important, especially when a CEA 
compares different tests at different locations. This may be especially relevant for 
low- and middle-income countries, where logistics can be more challenging. 
Although POC tests may be relatively expensive compared to tests analysed in 
large-scale laboratories63, having a test result available during a consult can more 
directly influence a clinician’s decision on prescribing treatment and enables the 
clinician to use the information when communicating with the patient54. 

2.2.4. Comparators 

The strategies being compared in the CEA should be clearly described65. While it 
may be convenient to think about comparing different, individual tests in the 
context of CEAs of diagnostics, it may be more fitting to compare different 
diagnostic algorithms. A diagnostic cannot be regarded in isolation. If we consider 
a single diagnostic test, the diagnostic algorithm already contains three steps. First 
the clinician decides to perform the test, which is influenced by guidelines and the 
clinician’s experience; then there is the diagnostic itself, which may present a binary 
result, i.e. positive or negative, but also a quantitative result, an image or a 
recommendation; the final step is the interpretation of this result by the clinician 
and/or the patient, which may result in a decision to make lifestyle changes, to start 
treatment or continue with other diagnostics. Different diagnostics can be added, 
either simultaneously or sequentially, based on the results of prior tests. There may 
also be differences in the implementation of the algorithm in clinical practice, e.g., 
the implementation in clinical decision support software.  Eventually, a diagnostic 
algorithm should lead to determining the most-likely cause of a patient’s symptoms 
and aid in identifying the most suitable treatment. These types of algorithms are 
already very common in economic analyses, where they translate into decision tree 
models61,71,72.  For diagnostic algorithms that include many different outcomes, i.e., 
a decision tree branching out to hundreds of outcomes, simplifications may be 
warranted or more flexible modelling approaches can be considered 73. 

We highly recommend specifying these algorithms very clearly in any economic 
analysis of a diagnostic strategy. Even when comparing a switch from one diagnostic 
test to another, the algorithm in which the test operates may have a major impact. 
The decisions made and information gathered before performing the test 
influences the prior probabilities of obtaining a positive or negative test result. For 
diagnostic algorithms that are more expensive than the comparator, the eventual 
cost-effectiveness is determined by to what extent the information gathered can 
improve patient outcomes, i.e., whether the information leads to more tailored 
treatment. 
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2.2.5. Time horizon 

Many economic evaluations of diagnostics primarily use the algorithm or decision 
tree to model the health-economic outcomes, as specified above. However, this 
may lead to challenges in assessing the long-term clinical outcomes for patients as 
these cannot be modelled explicitly. Generally, a lifetime horizon should be used66, 
however, there could be reasons to have a shorter time horizon, but they should 
cover all relevant costs and outcomes. Economic analyses only assessing a time 
horizon as long as the diagnostic process, as seen rather frequently in literature61, 
will in most cases not cover all relevant costs and outcomes. The time horizon 
should be similar to the time horizon over which costs and consequences of 
treatment following the diagnostic process are typically evaluated. 

An additional factor to consider for economic evaluations of diagnostics, is the time 
to correct diagnosis. A faster diagnostic algorithm may result in time reductions for 
patients, clinicians or laboratory technicians, leading to a more efficient decision-
making process54. In case of infectious disease, faster diagnosis may reduce the 
transmission of a disease, a factor generally considered to be an important aspect 
of value in health care (fear and risk of contagion)74. 

Combining very short-term (time to correct diagnosis) and long-term modelling (a 
lifetime time horizon) may lead to rather complex models for economic 
assessments of diagnostics , such as a combination of a discrete-event simulation 
and a transmission model to model tuberculosis diagnostics in Tanzania75. 
Depending on clinical perspectives, but also on data availability, it may be feasible 
to focus on only short- or long-term modelling. This decision process should be 
reported in a transparent manner. 

2.2.6. Choice of health outcomes 

Quality- or disability adjusted life years (QALYs and DALYs) generally are the 
preferred outcomes for economic analyses 66. Possibly due to the relatively many 
studies in the field of diagnostics with a short time horizon, authors commonly 
focus on rather short-term outcomes other than QALYs and DALYs61,76,77. Examples 
are outcomes based on the technical performance of the test (e.g. proportion of 
correct diagnoses) or the treatment decision (e.g. antibiotics prescribed)61. As stated 
in the introduction, IVD companies will be required to gather more information on 
the clinically relevant outcomes of novel diagnostics78, which presents an 
opportunity to include utility-based outcomes as well. This is not to say that other 
outcome measures are not relevant; we believe they are.  

Other elements of value of particular interest to diagnostics are reduction of 
uncertainty due to a new diagnostic, adherence-improving factors, fear of 
contagion (already described above), insurance value and real options value74. The 
reduction of uncertainty is relevant for both payers, as it reduces the uncertainty 
of the effectiveness of reimbursed care, and for patients and providers, as it may 
lead to more informed treatment decisions. This may also lead to increased 
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adherence to treatment. There are several elements of value for diagnostics that 
may not only benefit the individual patient and have broader societal advantages. 
The fear of contagion is already described above, closely related to this is the 
insurance value, which may relate to the risk of an individual to become sick74. For 
hereditary diseases, the results of diagnosing one patient may affect family 
members67 and for infectious diseases the data gathered by diagnosing one group 
of patients may inform empiric treatment for another group of patients79. Finally, 
real options value is relevant for infectious disease where resistance may occur. 
Prescribing treatment provides a risk that the treatment will be less effective in the 
future; simultaneously, it is uncertain that novel treatment options will be 
developed in the future. A diagnostic, which increases the adequacy of 
prescriptions, can decrease the probability of untreatable, resistant infections in 
the future80. Discussions on how to include these other, still novel, elements of 
value are ongoing and will depend on factors such as the disease area covered and 
health system assessed67,74. Continuing this discussion with all stakeholders, 
including policy makers, clinicians and patients, is important, as well as 
experimentation with novel methods in the field of CEAs. For some diseases with 
limited data on the effectiveness of treatment, such as genomic tests used for rare 
genetic disorders, it may be challenging to perform a CEA67. In these cases multi-
criteria decision analysis may be a feasible alternative81. 

2.2.7. Estimating resources and costs 

For CEAs in general, the included costs depend on the perspective used and the 
decision problem analysed. Depending on the perspective used, diagnostic and 
subsequent treatment costs may be included differently or even not be considered 
at all. For diagnostics, the costs are of particular interest as there may be more 
flexibility as compared to most drugs. The whole chain from collecting the patient 
sample to the reporting of the result will impact the eventual cost of the diagnostic. 
While large volumes of tests performed in laboratories will be relatively 
inexpensive, a POC test performed by the GP may yield more diagnostic value, i.e., 
the test can immediately influence the clinical decision. The following costs will be 
relevant for a CEA assessing a novel diagnostic: 

• Diagnostic sample collection costs (including personnel, reagent and 
material cost); 

• Transport costs (if the test is not performed at POC); 
• Costs of performing the test (including personnel, reagent, materials and 

depreciation costs); 
• Costs associated with reporting the test result to the clinician and/or the 

patient and, if applicable, changing the clinical decision. 

How precise test-related costs should be estimated depends on the perspective 
and decision problem, micro-costing will not always be useful or feasible72. 
However, using a fixed price per diagnostic test may underestimate the scale 
benefits associated with performing more tests using the same equipment 82. 
Sensitivity analyses to assess the impact of various assumptions to the economies 
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(and diseconomies) of scale related to performing more (or fewer) tests should be 
considered and should be consistent with the evaluated setting and populations, 
including any health system factors that may limit scale-up. For tests that can be 
used to diagnose various diseases (i.e., are part of several diagnostic algorithms, 
with patients experiencing different symptoms), these scale advantages should also 
be considered. 

2.2.8. Incremental costs and outcomes 

It is common to compare various diagnostic algorithms simultaneously within a 
CEA61, as explained above. The different algorithms may contain different diagnostic 
techniques but may also be performed in different sequences or at different 
locations (e.g., at POC or in a laboratory). Clearly presenting the differences in 
incremental costs and outcomes is important. A common graphical method to 
present the incremental costs and outcomes of a various algorithms is an efficiency 
or cost-effectiveness frontier75,83,84. This may be more easily interpretable than only 
providing a table of the results. An added benefit is that the efficiency frontier can 
be used to draw conclusions about the cost-effectiveness in the absence of a WTP 
threshold, as described elsewhere85. 

2.2.9. Affordability and reimbursement 

Factors outside of the direct scope of a CEA, but very relevant for its context, are 
the affordability and reimbursement of diagnostic interventions. The budget impact 
was seldom included in CEAs of diagnostics61; however, we believe this may provide 
important information regarding the affordability86. Especially if the current 
standard-of-care is based on clinical expertise, a new diagnostic test may greatly 
increase the total costs and may have a major budget impact. This is particularly 
relevant for low- and middle-income countries (LMICs), where resource constraints 
are more prevalent than in high-income countries. An additional constraint in LMICs 
may be the availability of skilled personnel to perform and operate new diagnostic 
tests66.  

In general, the perspective of the budget impact analysis is important, also in 
relation to the reimbursement of the various diagnostics considered and the payers 
involved: can health-care providers claim the diagnostic costs, should they pay for 
it themselves or should a patient pay a fee? Additionally, it is relevant whether the 
diagnostic test is funded out of the same budget as subsequent treatment. This 
does not directly influence the cost-effectiveness, but it will probably affect the 
implementation and uptake of a novel diagnostic test: e.g., a very cost-effective test 
for which the patient has to pay, may have a lower uptake than a test which is 
provided free of charge (i.e., paid for by the health system). These factors can be 
explored in the discussion of an economic analysis of a novel diagnostic. 
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2.2.10. Concluding remarks 

These diagnostic-specific recommendations are not meant to supplant the CHEERS 
recommendations or reference case for economic evaluations but may provide 
useful additions when designing and reporting CEAs of diagnostics. Although we 
based these recommendations on an extensive review of the literature as described 
in deliverable 5.1, they were not developed or validated through a formal process, 
such as a Delphi process. Although we expect the issues raised in the paper to be 
generalizable to diagnostics for all disease areas, some issues relevant for specific 
disease areas may not have been included. However, this research could be used 
as a starting point for a follow-up project to further develop diagnostic-specific 
guidelines or a reference case for diagnostic CEAs. 
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3. Proposed health-economic 
model for VALUE-Dx trials 
3.1. Overview model 

MERIAM (Modelling the Economics of Respiratory tract Infections and AMr) is a 
model built to assess the long-term health-economic effects of improved 
diagnostics for community-acquired acute respiratory tract infections at the first 
point of care. MERIAM, see overview in Figure 2, has three modules:  

• the demographic module, used to model the population over a long time horizon 
• the consultation module, used to model patients going to care with an acute 

respiratory tract infection 
• the AMR forecasting module, used to forecast AMR levels. 

 

The demographic module contains a representative sample of the modelled 
country. The consultation model uses incidence data to simulate the care-seeking 
behaviour for community-acquired respiratory tract infections of a subset of 
individuals from the demographic model and their outcomes, including diagnostics, 
costs and antibiotic consumption. The AMR module uses antibiotic consumption 
data to forecast AMR levels. 

Figure 2 overview of MERIAM 
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3.2. Demographic module 

Within the model, individuals are simulated, i.e., the model can be considered 
agent-based. Populations are based on demographic data from Eurostat mainly 
incorporating age and sex and can be made as large as needed for the analysis.  

  

3.2.1. Annual demographic changes 

Every year the population is updated to reflect the Eurostat projections, here we 
use model cycles of one year. The following is included: 

• Mortality 

• Ageing 

• Fertility 

• Migration 

The assumption is made that the population changes are made on January 1, 
improving the efficiency of the modelling approach. 

Mortality 
Mortality is based on the Eurostat mortality probability projections. The mortality 
probability is sampled for all individuals alive. A major assumption in the model is 
that all individuals aged over 99 are excluded: we do not include centennials in the 
model. 

Ageing 
Ageing is straightforward in that it increases the age with 1 every year. 

Fertility 
Data on births are used from the Eurostat population projections. The number of 
babies born is related to the population aged 15-45. 

Migration 
The model accounts for migration by using the Eurostat projections. The Eurostat 
projections provide total numbers of immigration (positive number) and emigration 
(negative number). In MERIAM this is related to the total population and converted 
to a rate. This rate is then used to calculate the total number of immigrants and 
emigrants. This basically assumes that both immigration and emigration increase 
when the population size increases. 

Data sources 
For countries within the European Union, the Eurostat87 data sources used are 
displayed in Table 3. For the United Kingdom, the population projection data from 
the Office for National Statistics are used. 
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Table 3 main data sources demographic module for Eurostat 

Data Used for ID 
Population projections Population, sex, age, fertility proj_23np 
Migration rates Migration proj_23nanmig 
Mortality rates Mortality proj_23naasmr 

 

3.3. Consultation module 

Each week, a subset of nodes will seek care. These nodes are selected based on 
real-world incidence data. 

3.3.1. Incidence 

To estimate the number of individuals entering the consultation module, a country-
specific number of new cases with cough or sore throat is needed. Incidence data 
from the European Surveillance System (TESSy) of the European Centre for Disease 
Control (ECDC) was found to be the best available source. Data was requested for 
the period 2010 to 2023 and contained incidence of acute respiratory infections 
(ARI) and Influenza-like-Illness (ILI) from countries within the European Economic 
Area (EEA)(n=27). Data was aggregated by week.  

Data cleansing and analysis of incidence were performed using R. Data from two 
countries were excluded from the original dataset: Cyprus, Finland, Luxembourg, 
and Malta. The denominator values of Cyprus and Finland fluctuated unreasonably 
high. The data of Luxembourg and Malta were deemed not representative to the 
rest of countries within the EU/EEA, due to very low denominator values. Weekly 
incidence of ARI and ILI were calculated per 100,000 population to enable 
comparison across countries. This resulted in prepared datasets with ARI and ILI 
incidence grouped by country, season (splitting at ISO week 35), and age group (ages 
0-4, 5-14, 15-64, 65 and older). Only countries with data available for the full season 
were included. Seasons during the COVID-19 pandemic (2019-2020, 2020-2021, and 
2021-2022) were excluded. Incidence was converted into an incidence object and 
modelled using the Incidence package 88. To be able to identify the influenza season, 
two exponential models will be created for each season: one where the number of 
cases increases over time and one where the number of cases decreases. In this 
way an annual peak is created and the influenza season can be determined using a 
consensual threshold value. 

Index consultation 
During the index consultation, a clinician will perform tests, prescribe antibiotics 
etc. on the individuals seeking care. For all nodes seeking care (as described above), 
tests and antibiotic prescriptions are sampled. 

As far as the tests are not part of the intervention (in the CRP testing scenario, 
everyone received a CRP test), they are sampled using the PPAS data89. 
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Antibiotics are also sampled using the PPAS data: the proportion of antibiotic 
prescriptions is stratified by age (two categories: younger than 60 and 60 and older). 

3.3.2. Consultation decision tree 

Model structure 

A decision tree was developed to model the patient journey as per the clinical 
algorithm of PRUDENCE. Figure 3 provides a schematic overview of the decision tree. 
All patients present with CA-ARTI and are classified as having a positive COVID-test 
or a negative COVID-test. In case of a positive COVID-test, patients will follow 
Standard-of-Care or will be tested with an Afinion CRP test. Subsequently, the 
decision on the treatment with or without antibiotics will be made by the GP. In 
case the patient had a negative COVID test, a distinction was made between in and 
out flu season. Subsequently, patients’ main symptom results in a further 
segregation between cough and sore throat. For each of the resulting branches, 
different point-of-care diagnostic tests were applied. In all cases, patients could 
receive standard-of-care which could include tests performed as part of standard 
clinical procedures. In case of cough during the flu season, patients were tested 
with the Afinion CRP test or the Veritor influenza A/B test. In case of sore throat, 
patients were tested with Veritor Total which includes an influenza A/B test and/or 
a Group A streptococcus (GAS) test (decided by the GP). Outside the influenza 
season, patients with cough were tested with the Afinion CRP test. Patients with a 
sore throat were tested with a Veritor GAS test. Each branch ended with the decision 
to prescribe antibiotics or not. Subsequently, patients continued to the post 
consultation Markov model (refer to section 4.4.3 for more details). 
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Figure 3 Decision-tree model 
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3.3.3. Input parameters 

Costs 
The costs that were considered within the decision tree include the cost of the 
point-of-care diagnostics, any additional diagnostics performed at the same 
encounter, costs of antibiotics and costs of other drugs prescribed by the GP. The 
frequency of additional diagnostic performed, type of antibiotic prescribed and 
frequency of other medication prescribed were based on the PRUDENCE trial and 
were multiplied by the costs as per Table 4. The cost values in Table 4 were sourced 
from publicly available sources in Spain and the United-Kingdom and translated to 
International Dollars using the Purchasing Power Parities (PPP).  

Table 4 Model cost parameters 

Cost parameter United-Kingdom (£) Spain (€) 
Test cost   

CRP test 5.5 8 
Influenza test 9 9 
Group A streptococcus test 5 5 
COVID test 10 10 

Drug cost (per regimen)   
Tetracycline 6.22 5.11 
Narrow spectrum 2.39 6.61 
Broad spectrum 2.05 3.93 
Coamoxiclav 2.98 8.03 
Macrolide 7.79 6.69 
Quinolone 9.38 10.48 
Cephalosporin 12.07 12.59 
Other antibiotics 8.15 10 
Inhalation medication 12.56 17.48 
Antiviral drug 10 10.4 
Antihistamines 2.29 3.51 
Paracetamol 0.45 1.6 
Cough suppressor 3.91 1.8 
Other medication 9.03 10 

  

Probability  

For each sub-branch, a direct comparison was made, which means that patients in 
the same branch were compared. As such, patients with a negative Covid test, within 
the influenza season with cough were compared when receiving Standard of Care 
vs Afinion CRP or Standard of Care vs. Veritor influenza A/B. A similar approach was 
taken for the other branches.  

As a result, the only probability that impacted the result was the probability of 
prescribing antibiotics. The probability of a positive covid test, the probability of 
being in the influenza season and the probability of having cough as a main 
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symptom were only used to inform the total impact of applying diagnostics vs. 
following standard of care. In table 5, an overview is provided of the branch specific 
probabilities. 

 

Table 5 Branch specific probabilities for prescribing antibiotics. 

COVID 
status 

Main 
symptom 

Influenza 
season? 

Arm Probability of prescribing 
antibiotics 

FALSE Sore throat No SoC 0.565 

Group A streptococcus test 0.552 

Yes SoC 0.456 

Group A streptococcus test + 
Influenza test 

0.402 

Cough No SoC 0.482 

CRP test 0.466 

Yes SoC 0.436 

CRP test 0.478 

Influenza test 0.437 

TRUE  SoC 0.237 

CRP test 0.238 

Abbreviations: CRP = C-reactive protein; SoC = Standard-of-Care 

Outcome parameters 

The primary model outcome measures include: 

• Total cost 
• Percentage point reduction in antibiotic prescriptions 
• The cost per percentage point reduction in antibiotic prescription. 

  

3.3.4. Post-consultation follow-up 

Model overview 
For the post-consultation follow-up, a Markov model was developed consisting of 
the health states “sick” and “healthy”. Patients could transition from the “sick” to 
the “healthy” health state on a daily basis (one day cycle length) over a maximum 
of 28 days (28 day time horizon). The “Healthy” health state was considered an 
absorbing health state, patients could not get sick again within the 28 day time 
horizon after they became healthy. 
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Figure 4 Post-consultation Markov model. 

Due to the short time horizon, discounting of costs and effects were not applicable.  

 

Cost and effects 

The input parameters for the post-consultation model included resource costs (visit 
of GP, pharmacy, paediatrician, A&E, specialist or out of hours service, hospital day, 
ICU day), societal costs (work hours missed, hours spend on caregiving, over the 
counter drug costs, out-of-pocket costs for childcare) travel costs and quality of life 
expressed in QALY. An overview of the cost parameters is provided in Table 6. The 
ratio of the cost parameter per health state are sourced from the PRUDENCE trial 
and calculated as an overall average for all participating countries together.  

Table 6 Overview of cost parameters used in the Markov model. 

Cost parameter United-Kingdom (£) Spain (€) 
GP visit 33 47 
Pharmacy visit 6 6 
Paediatrician visit 33 47 
Accident and emergency visit 200 139 
Specialist visit 155 137 
Out-of-hours service 86 94 
Hospital day 827.12 681 
ICU episode 6834.54 5013 
Hourly wage, general population 24.5 16.8 
Hourly wage, caregiver 24.5 16.8 
x-ray  31 23 
Other diagnostic tests 18 26.05 
Wbc point of care test 10 10 
Wbc lab test 9 9 
COVID lab test 20 20 
COVID point-of-care test 10 10 
Travel cost regional hospital 5 5 
Travel cost to local care center 1 1 
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Transition probability 

The transition probability from “sick” to “healthy” was based on the day patients 
returned to their daily activities as captured within the PRUDENCE trial. A survival 
model was established based on key characteristics (geography, age, study arm, 
influenza season, symptom severity, treated with antibiotics) and the day the 
patient returned to their daily activities. The following parametric distributions 
were applied: 

- Generalized gamma 
- Generalized F 
- Weibull 
- Gamma 
- Exponential 
- Log-logistic 
- Log-normal 
- Gompertz 

 

Table 7 AIC and BIC values per distribution. 

Distribution AIC BIC 
Gengamma 13200 13351 

Generalized F 13202 13358 
Log normal 13210 13355 

Log-logistic 13283 13429 

Gamma 13460 13606 

Weibull 13540 13686 
Gompertz 13649 13794 

Exponential 13655 13794 
 

Out of the eight distributions, the distribution with the most optimal AIC and BIC 
value (lowest value for both AIC and BIC) was selected which was the Log-normal 
distribution. 

Based on the resulting survival curve, the probability of transitioning from “sick” to 
“Healthy” was estimated for day 1 until day 28. 

 

Quality of life 
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The Health Related Quality of Life (HRQoL) was measured using the EQ-5D-5L 
questionnaire. The EQ-5D-5L questionnaire is a validated, generic (non-disease-
specific) instrument for valuing health-related quality of life90. The EQ-5D contains 
five dimensions, each with five levels of severity. The five dimensions are: mobility, 
self-care, usual activities, pain / discomfort, and anxiety / depression. Each 
dimension has 5 levels: no problems, slight problems, moderate problems, severe 
problems and extreme problems. The patient had to select the most appropriate 
level for each of the five dimensions, resulting in a 1-digit number for each of the 
five dimensions. The resulting 5-digit number describes the patient’s health state91. 
Applying a specific algorithm to the 5 responses to the EQ-5D will result in a single 
score expressing quality of life, the so-called utility. The algorithm, or tariff, is 
country-specific. When it is not available for a certain country, the tariff of a 
neighbouring country (or country similar in culture) may be applied.   

For the base-case, the UK crosswalk tariff was applied. Since the current analysis is 
based on a heterogenous patient population across different age groups and 
countries, the disutility due to a CA-ARTI was estimated which is the decrement in 
utility between the initial utility and the utility when the patient resumed to their 
daily activities (represented by the results from day 14 or day 28). In an effort to 
reduce the heterogeneity, the analysis of disutilities was focused on the primary 
care facilities, patients in the long-term care facilities were excluded from the 
analysis. The resulting disutility is reported as negative value and could be 
considered as the CA-ARTI specific impact on the quality of life of the patient.  

An additional analysis was performed in which the EQ-5D-5L data was split by the 
disease severity as assessed by the GP at day 1. Additionally, the disutility value was 
calculated for countries that had an EQ-5D-5L tariff or a crosswalk set available, 
which were the following countries: 

- Germany 
- United-Kingdom 
- Italy 
- France 
- Spain 
- Poland 
- Romania 
- Netherlands 
- Belgium 
- Sweden 
- Portugal 
- Hungary 
- Denmark 
- Ireland 
- Slovenia 
- Russia 
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3.4. Antimicrobial resistance forecasting 

The AMR model uses a two-step approach. First, the baseline AMR projections are 
generated, using an ensemble model. This is a data-driven approach where current 
trends are used to forecast future AMR rates. These baseline projections are then 
used for the current-care scenario, where we assume current patterns in AMR will 
continue in the future. The second step is to incorporate the impact on antibiotic 
consumption from the diagnostic strategies, in the baseline AMR projections. This 
uses a more mechanistically driven approach. The steps are described in more 
detail below. 

The first step in this process is to forecast AMR rates when the status quo is 
preserved, i.e. current AMR policies remain, but no additional measures are taken. 
Predicting antimicrobial resistance (AMR) is a challenging task, as the development 
and subsequent spread of resistance genes is highly uncertain. Two methods of 
modelling AMR in the population over time have been identified92: 

• Mechanistic dynamic transmission models, which models the transmission 
of resistant pathogens through populations, requiring information on the 
mechanisms of spread of resistant pathogens. 

• Statistical forecasting methods, which is a data-driven approach where the 
underlying mechanisms of resistance is not considered: past trends are used 
to forecast future AMR rates. 

Additionally, expert elicitation is a viable method to forecast AMR, which can be 
combined with these modelling approaches93. The mechanisms to attain and retain 
resistance may differ between various pathogens. As we aim to assess the impact 
of diagnostics for all community-acquired respiratory-tract infections in the 
population, which can be caused by various pathogens94, we considered a 
mechanistic dynamic transmission model not to be a viable strategy. A statistical 
forecasting method, comparable to the methods used by Hashiguchi et al. was used 
instead95. 

Several methods are available for time series forecasting96,97, but selecting a single 
‘best’ model is challenging. Ensemble methods are an often-used technique to 
improve forecasts: instead of picking one model, several models are used 
simultaneously and then combined to provide an average. We developed an 
ensemble model, averaging three models: 

• An exponential smoothing (ETS) model, which forecasts future data using 
weighted averages of past observations96. 

• A random forest, which aggregates many regression trees to estimate the 
outcome of interest (AMR rates in our case)98. Bagging (bootstrapping and 
aggregating) is used, where each decision tree is informed by a random 
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sample, with only a subset of the available regressors, of the original data 
set. The different trees are grown in parallel, i.e. new trees are not informed 
by previous trees. 

• An XGBoost model, which also combines many regression trees to estimate 
the outcome of interest, however, as opposed to random forests, a 
sequential tree growing algorithm (boosting) is used, where each new tree 
informs the creation of the next tree99. 

3.4.1. Missing data 

The European consumption and AMR data had some missing data. These were 
imputed using the Amelia algorithm100 which allows for time-series-cross-sectional 
data to be imputed. To incorporate uncertainty in the various forecasts, the 
imputation algorithm was run 2000 times to incorporate uncertainty. 

3.4.2. Forecasts of antibiotic consumption 

Antibiotic consumption of broad-spectrum penicillins was forecast using an ETS 
model. 

There are different ETS methods. As we considered annual data, we did not consider 
seasonal components. The trend can be either none, additive, additive damped or 
multiplicative. Multiplicative trends tend to produce poor forecasts and additive 
trends can overestimate the trend on the long term96, hence we considered an 
additive damped trend. The consumption data were box-cox transformed so that 
the data resembled a normal distribution. 

The results of this analysis are displayed in Figure 5. The raw results and accuracy 
metrics are included in appendix I. 
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Figure 5 forecasts of antibiotic consumption in defined daily doses per 1,000 
inhabitants per day of broad-spectrum penicillins. Historic data based on data 
collected in the TESSy database101.  

3.4.3. AMR forecasts 

For the antimicrobial resistance forecasts the dataset was split into a training and 
a testing set (training: 2005-2017, testing: 2018-2022), to be able to measure the 
performance of the forecasts. After fitting the different models to the training set, 
the prediction of the testing set was assessed. Then the models were refit to the 
full dataset to forecast the AMR rates up to 2050. 

Although we focussed on Streptococcus pneumoniae to broad-spectrum penicillins 
in the Netherlands in this paper, we incorporated data from other bug-drug 
combinations and European countries as regressors in the random forest and 
XGBoost models. 

Exponential smoothing model 
The exponential smoothing model uses a similar approach as described for the 
consumption forecasts, hence an additive, damped, trend. 

Random forest model 
The random forest model uses the following regressors to predict the AMR rate: 

• Antibiotic consumption 

• GDP forecasts (corrected for purchasing power parities) 

• Forecasts proportion population aged < 15 years 

• Forecasts proportion population aged > 64 years 

• Forecasts healthcare expenditure (% of GDP) 

• Forecasts out-of-pocket spending on health (% of total spending on health) 

XGBoost model 
The XGBoost99 model uses the same dependent variables as the random forest 
model.  

Ensemble 
The ensemble model is created by averaging (with equal weights) the predicted 
values across the best performing models, one variant of each of the model types 
(see below).  

Accuracy of predictions 
The accuracy of the different models is calculated on the testing set, using the 
models trained only on the training set. Figure 6 shows an example of the 
calibration of one model iteration. 
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Figure 6 example of model accuracy, based on the three individual models and 
model ensemble. 

The performance of time-series forecasts are often represented using the root 
mean squared error (RMSE), which is calculated using the following formula96: 

𝑅𝑀𝑆𝐸 =  √𝑚𝑒𝑎𝑛(𝑒𝑡
2) 

Where et is the forecast error of values from the testing set. 

The values differ within the probabilistic analysis, table 6 gives an overview. 

Hyperparameter tuning of machine learning models 
The Random Forest and XGBoost models were tuned using a Bayesian grid search, 
to select three optimal model candidates. Optimal models were based on 
minimizing the RMSE.  

For each of the countries, the optimal random forest and XGBoost model was 
selected out of three fitted models, again minimizing the RMSE. 

Incorporating uncertainty 
The previously described forecasting methods generate point forecasts, that is, a 
mean is forecast, but no statistical distribution. To incorporate uncertainty in the 
AMR forecasting model, the following input parameters are varied and the models 
are fitted for 2000 iterations: 

• A different imputed data set is used for both the historical AMR data and 
antibiotic consumption 

• Forecasts healthcare expenditure (% of GDP) are varied for the model 
replications 

• Forecasts out-of-pocket spending on health (% of total spending on health) 
are varied for the model replications 
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Consequently, all model replications use slightly different AMR projections. 
However, we have not quantified all uncertainty associated with the projections, 
i.e. not all possible future AMR rates are included in the modelling. 

Predictions of antimicrobial resistance 
The results of this analysis are displayed in Figure 7. The raw results and accuracy 
metrics are included in appendix II. 
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Figure 7 forecasts of antibiotic resistance of Streptococuus pneumoniae against 
broad-spectrum penicillins. Historic data based on data collected in the TESSy 
database101.  
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3.4.4. Incremental effects of diagnostic strategies 

As has been described elsewhere, there is a clear relationship between antibiotic 
consumption and national AMR rates102,103. We use this relationship to relate the 
change in antibiotic consumption, as estimated in MERIAM, to future AMR levels 
(projected as described above). The following formula is used: 

𝑝𝑇𝑒𝑠𝑡,𝑡
𝐴𝑏,𝐵 = 𝑝𝐵𝑎𝑠𝑒,𝑡

𝐴𝑏,𝐵 (1 +
𝐶𝑇𝑒𝑠𝑡,𝑡−1

𝐴𝑏 −  𝐶𝐵𝑎𝑠𝑒,𝑡−1
𝐴𝑏

𝐶𝐵𝑎𝑠𝑒,𝑡−1
𝐴𝑏 × 𝜖𝐴𝑏,𝐵) 

Where 𝑝𝑇𝑒𝑠𝑡,𝑡
𝐴𝑏,𝐵  is the proportion of resistance of bacterium B to antibiotic Ab under 

the testing scenario in the year t; 𝑝𝐵𝑎𝑠𝑒,𝑡
𝐴𝑏,𝐵  the proportion of resistance of 

bacterium B to antibiotic Ab under the base case scenario in the year t; 𝐶𝑇𝑒𝑠𝑡,𝑡−1
𝐴𝑏 the 

antibiotic consumption of antibiotic Ab in the year t−1 in the testing 
scenario; 𝐶𝐵𝑎𝑠𝑒,𝑡−1

𝐴𝑏 the antibiotic consumption of antibiotic Ab in the year t−1 in the 
base case scenario and ϵ the elasticity between antibiotic consumption of 
antibiotic Ab and the development of resistance in bacterium B. 

Estimating elasticity 
The elasticity ϵ is given by the following formula: 

𝜖 =  
% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 

The correlation as published by Goossens et al. was used as the elasticity, i.e., 0.84 
(CI: 0.62 – 0.94) for S. pneumoniae against penicillins102.  

3.4.5. Mortality due to antimicrobial resistance 

An exploratory analysis was performed to estimate the impact of AMR on quality of 
life (QoL). A decision tree was created to calculate excess mortality and subsequent 
QALYs lost due to resistance for a particular pathogen-drug combination.  

As streptococcus pneumoniae was the most frequently implicated bacterial 
infection for community-acquired pneumoniae (CAP) in Europe, and penicillin was 
the most frequently prescribed antibiotic for ARI and ILI cases in PRUDENCE, the 
QALY loss of patients with the pathogen-drug combination ‘penicillin S. 
pneumoniae’ was estimated104. The scope of the decision tree was therefore 
narrowed down to patients diagnosed with pneumoniae. The probability of S. 
pneumoniae was 26.6%, based on findings from a recent study on serotype 
distribution among adults with CAP105. The proportion of penicillin-resistant S. 
pneumoniae patients between 2010 and 2022 followed from data published by the 
Surveillance Atlas for Infectious Disease of the ECDC101.  

Data on mortality and QoL was scarcely available in literature and was derived from 
a variety of sources. A key source among these was the study on the global burden 
of bacterial antimicrobial resistance in 2019, which provided a comprehensive 
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overview of relative risk estimates on mortality for various pathogen-drug 
combinations 106. Here, a relative risk of death of 1.27 (1.18-1.36) was reported for 
penicillin-resistant S. pneumoniae compared to penicillin-sensitive S. pneumoniae. 
Risk of mortality for the resistant group was derived from the modelling analysis 
performed by Cassini et al.37. With a median mortality of 0.03 deaths over a median 
incidence of 0.55 per 100,000 of penicillin-resistant S. pneumoniae (excluding those 
resistant to macrolides), a mortality probability of 0.053 was calculated. The 
probability of mortality in the sensitive group was calculated by dividing the 
probability of the resistant group by the relative risk of mortality derived from 
Murray et al. This resulted in a mortality probability of 0.042 for the sensitive group. 

Mortality risk of pneumonia other than S. pneumoniae was not explicitly reported 
in literature. Consequently, the mortality of three aetiologies other than S. 
pneumoniae (i.e. respiratory syncytial virus, haemophilus influenzae type b, and 
influenza) as part of lower respiratory tract infections reported by the Global 
Burden of Disease Study 2016 was taken as a proxy for non-S. pneumoniae 
mortality107. Incidence and mortality per 100,000 were 960 and 2.4, respectively, 
resulting in a mortality probability of 0.002.  

QoL estimates in terms of QALYs were estimated from a cost-effectiveness analysis 
performed in the Netherlands108. Relevant input parameters of the model used in 
the analysis we the QALY loss due to inpatient CAP (0.0709±0.020, using a PERT 
distribution).  

An overview of probabilities and payoffs is presented in Table 8. The decision tree 
is visualised in Figure 8. 

Table 8 parameters for in the decision tree to calculate the excess mortality of streptococcus 
pneumoniae patients due to penicillin resistance. 

Type of 
parameter 

Description Value 

probability The probability of Streptococcus pneumoniae among patients diagnosed with 
pneumoniae 

0.266 

probability The probability of penicillin-resistance among streptococcus pneumoniae 
patients 

0.126 

probability The probability of dying from penicillin-resistant streptococcus pneumoniae 0.053 
probability The probability of dying from penicillin-sensitive streptococcus pneumoniae 0.042 
probability The probability of dying from pneumoniae other than streptococcus 

pneumoniae 
0.002 

payoff QALYs lost due to penicillin-resistant streptococcus pneumoniae 0.071 
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Figure 8 Decision tree showing the relevant pathways and associated probabilities to calculate the 
excess mortality of streptococcus pneumoniae patients due to penicillin resistance. 

 

3.4.6. Overview data sources 

The input data were used based on literature95 and export opinion, see Table 9 for 
an overview. 

Table 9 Overview data sources AMR model 

Data Database Notes Reference 

Antimicrobial 
resistance 

Surveillance 
Atlas for 
Infectious 
Disease 

 
109 

Antibiotic 
consumption 

ECAC-Net 
 

110 

Population 
projections 

Eurostat 
 

111 

Historical 
demographic data 

Eurostat 
 

112 

GDP projections OECD Used for 
OECD 
countries 

113 

GDP per capita World Bank Used for 
non-OECD 
countries 

114 
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Health expenditure 
projections 

Literature 
 

1 

Out-of-pocket 
healthcare 
payments 
projections 

Literature 
 

1 
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4. Results of the health-economic 
model 
4.1. Quality of life estimates 

For the base-case, the disutility values were calculated per treatment arm. Based 
on the results in Table 10, it can be concluded that no between arm differences in 
utility values were present except. The average disutility was -0.219 (median = -
0.205; SE = -0.0042) for a duration of 5.34 days (SE = 0.118).  

Table 10 Overview of disutility values per treatment arm 

COVID 
status 

Main 
symptom 

Influenza 
season? 

Arm Disutility value Number of 
patients Mean Lower 

limit 
Upper 
limit 

FALSE Sore 
throat 

No SoC -0.2386 -0.2083 -0.2690 176 

Group A 
streptococcus test 

-0.2296 -0.2005 -0.2587 173 

Yes SoC -0.2582 -0.2222 -0.2942 135 

Group A 
streptococcus test + 
Influenza test 

-0.2219 -0.1915 -0.2522 141 

Cough No SoC -0.1967 -0.1753 -0.2182 264 

CRP test -0.1909 -0.1710 -0.2107 286 

Yes SoC -0.2284 -0.2039 -0.2530 192 

CRP test -0.2020 -0.1796 -0.2244 195 

Influenza test -0.2098 -0.1861 -0.2334 192 

TRUE  SoC -0.1464 -0.1061 -0.1867 62 

CRP test -0.1586 -0.1208 -0.1965 64 

 

COVID positive patients experienced a lower disutility as a result of the disease. It 
appeared that these patients had a higher average utility value at day 1 compared 
to the patients testing negative for COVID, with an average of 0.784 and 0.721, 
respectively.  

4.2. Additional analysis 

Disutility by disease severity 

The average disutility value by disease severity (as assessed by the GP at day 1) was 
-0.188 (median = -0.178; SE: 0.005), -0.250 (median = -0.220; SE: 0.007) and -0.341 
(median = -0,308; SE: 0.036) for a mild, moderate and severe disease, respectively. 
When combined with the disease duration, the average disutility expressed in QALY 
is -0.0025 (disease duration: 4.91 days; SE: 0.14 days), -0.0041 (disease duration: 6.04 
days; SE: 0.20 days) and -0.0054 (disease duration: 5.74 days; SE: 1.10 days) for a 
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mild, moderate and severe disease episode, respectively. Figure 9 illustrates that 
the mean and median disutility value is increasing with disease severity.  

 

A.

  

B.

  

Figure 9 Utility values based on UK value set. A) Overall disutility value, B) 
Disutility value per disease severity at day 1 (assessed by GP). *Dashed line = 
mean, solid line = median. 

Disutility per country 

In Table 11, the overall disutility value per country is provided which illustrates the 
differences in disutility estimates between the countries. For each entry in the table, 
all available EQ-5D-5L data were used (i.e. from all countries in the clinical study), 
the differences can be explained solely by the differences in the country specific 
tariffs (value sets) that were applied. 

The value sets that accompany EQ-5D instruments provide a means of summarising, 
via a single number, a patient’s health status as described by the EQ-5D. These 
numbers lie on a scale anchored at 1 (full health) and 0 (dead). The values are built 
up from a set of sub-weights which represent the relative importance of each level 
of problem in each dimensiozzzzzz 
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Table 11 Average disutility value per country. 

  Aggregated results  By disease severity  
Country  Average (SE)  Average 

disease 
duration  
(days)  

Mild disease 
(SE)  

Mild 
disease 
duration 
(days)  

Moderate 
disease (SE)  

Moderate 
disease 
duration 
(days)  

Severe 
disease (SE)  

Severe 
disease 
duration 
(days)  

Poland  0.096 (0.003)  

5.44  

0.069 (0.003)  

4.91  

0.125 (0.006)  

6.04  

0.174 (0.03)  

5.74  

Sweden  0.107 (0.004)  0.071 (0.004)  0.143 (0.006)  0.206 (0.034)  
France  0.108 (0.004)  0.075 (0.003)  0.141 (0.006)  0.200 (0.033)  
Romania  0.118 (0.003)  0.096 (0.003)  0.140 (0.004)  0.197 (0.022)  
Russia  0.127 (0.003)  0.104 (0.003)  0.150 (0.005)  0.210 (0.024)  
Portugal  0.146 (0.004)  0.11 (0.004)  0.182 (0.006)  0.254 (0.033)  
Hungary  0.150 (0.004)  0.109 (0.004)  0.194 (0.008)  0.267 (0.039)  
Germany  0.151 (0.004)  0.113 (0.004)  0.190 (0.007)  0.262 (0.038)  
Denmark  0.160 (0.005)  0.120 (0.005)  0.201 (0.008)  0.288 (0.039)  
Italy  0.162 (0.004)  0.120 (0.005)  0.205 (0.008)  0.287 (0.04)  
Spain  0.167 (0.004)  0.137 (0.004)  0.197 (0.006)  0.274 (0.03)  
Slovenia  0.179 (0.005)  0.131 (0.005)  0.229 (0.009)  0.315 (0.043)  
Belgium  0.180 (0.004)  0.144 (0.005)  0.217 (0.007)  0.297 (0.037)  
Ireland  0.192 (0.005)  0.148 (0.005)  0.236 (0.009)  0.336 (0.043)  
Netherlands  0.195 (0.004)  0.157 (0.005)  0.234 (0.007)  0.323 (0.037)  
United-Kingdom  0.219 (0.004)  0.188 (0.005)  0.250 (0.007)  0.341 (0.036)  

Abbreviations: SE = standard error.  
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The between country differences from Table 11 can be explained by the breakdown 
in dimensions in Figure 10. For each of the 5 dimensions, the day 1 average score 
(including the interquartile ranges) and the score when returning back to the usual 
activities is reflected. As can be concluded from Figure 10, the major pre- post 
differences were found on the dimensions of pain and usual activities. Depending 
on the country specific value sets, the relatively higher scores on the dimensions of 
pain and usual activities translate into a reduction of the overall single value that 
represents the health state of the patient. 

 

 

Figure 10 EQ-5D-5L dimension relative differences 

In Figure 11 the impact of the score on each of the five dimensions is reflected 
against the impact on the utility score, with the Netherlands and Poland taken as 
an example. As can be concluded from Figure 11, the utility score is reduced more 
steeply at the lower scores (1-3) for the Netherlands compared to Poland. Since 
most of the EQ-5D-5L scores in the PRUDENCE trial were in the 1 to 3 level range, 
countries such as the Netherlands have higher disutility scores for a CA-ARTI 
compared to countries such as Poland.  
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Figure 11 Overview of score vs. impact on utility value.115 

 

 

4.3. PRUDENCE analysis 

The results of the main PRUDENCE analysis can be found in Deliverable 5.3. The 
current section covers a sub-analysis in which the incremental costs, incremental 
effects in QALYs and the incremental effect on antibiotic prescription rate was 
calculated for each of the branches of the decision tree (see Figure 3).  

The results of the deterministic analysis are summarized in Table 12. Three out of 
the six comparisons resulted in a decrease in the antibiotic prescription rate, 
including the Group A streptococcus test vs. SoC, the CRP-test vs. SoC (outside the 
flu season) and the Group A streptococcus test + Influenza test vs. SoC. 
Unfortunately, in line with the results of the main analysis, the incremental 
differences in the antibiotic prescription rate were very small. Interestingly, the 
comparison of the Group A streptococcus test vs. SoC resulted in both a decrease 
in the antibiotic prescription rate and in cost-savings. As a result, the Group A 
streptococcus test was considered dominant compared to SoC.  
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Table 12 Overview of health economic outcomes PRUDENCE (deterministic analysis) 

Comparison Incremental 
cost  

(societal 
perspective) 

Incremental 
cost  

(healthcare 
perspective) 

Incremental 

Effect 
(QALY) 

Percentage 
point 
difference in 
antibiotic 
prescriptions 

Cost per 
percentage 
point 
reduction in 
antibiotic 
prescription 

(societal) 

Cost per 
percentage 
point 
reduction in 
antibiotic 
prescription 

(Payer) 

Veritor gas 
vs. SoC 

 Cost-saving Cost-saving 0.0003 1.32 Dominant Dominant 

CRP vs. SoC 
(no flu 
season) 

€ 25.12 € 9.17 0.0000 1.65 € 15.22 € 5.56 

Veritor 
gas/inf vs. 
SoC 

€ 201.11 € 10.53 0.0005 5.44 € 36.93 € 1.93 

CRP vs. SoC 
(flu season) 

Cost-saving Cost-saving 0.0001 -4.19 Dominated Dominated 

Veritor infl 
vs. SoC 

€ 19.63 Cost-saving 0.0001 -0.12 Dominated Dominated 

CRP vs. SoC 
(pos. Covid) 

Cost-saving 174.64 -0.0002 -0.07 Dominated Dominated 

 

To assess the uncertainty of the deterministic results (as reflected in Table 12), a 
probabilistic sensitivity analysis (PSA) was performed. Beta (for probabilities) and 
Gamma (for costs) distributions were applied to the variables and the model was 
run for 1,000 simulations. The results of the PSA are presented Figure 12. The results 
of the PSA highlight the great uncertainty of the results in terms of the incremental 
costs and effect on the antibiotic prescription rate. Based on the deterministic 
results, the Group A streptococcus test was considered dominant. However, the 
results of the PSA highlight that the cost-effectiveness profile of the Group A 
streptococcus test is very similar to that of the other tests and therefore 
deterministic results should be interpreted with caution given the uncertainty of 
the results. 
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Figure 12 Cost-effectiveness plane 
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4.4. ADEQUATE main analysis 

For the results of the health-economic analysis and scenario analyses for 
ADEQUATE, please refer to Deliverable 5.3. The scope of the ADEQUATE study was 
limited to costs, antibiotic prescriptions, and a small patient population. Hence, an 
alongside clinical trial analysis was considered to be the most appropriate way to 
assess its cost-effectiveness.  

The adult trial has been terminated at an early stage and the trial continued for 
children. This had a major impact on the effect diagnostics could have on long-term 
antimicrobial resistance due to the limited scope. The proportion of antibiotics 
prescribed at the emergency department is only a small number of the total number 
of antibiotics prescribed. Furthermore, the antibiotics prescribed to children is a 
small proportion of the total number of antibiotics prescribed at the emergency 
department. Hence, the reduction in antibiotic prescriptions realized in the 
ADEQUATE trial, within the trial population, would not demonstrate any effect on 
the development of long-term antimicrobial resistance.  

By integrating the data collected in the halted adult trial with the paediatric trial 
data using Bayesian analysis, a long-term model would be feasible, as the patient 
population and coverage of total antibiotic prescriptions would increase. However, 
the impact still would be limited: in a previous analysis116, it was estimated that 
around 80% of Broad Spectrum Penicillin (BSP) for CA-ARTI in the Netherlands are 
prescribed in primary care. At most, 20% of total BSP prescriptions could be 
influenced by the interventions included in ADEQUATE. Assuming an 28% reduction 
in antibiotic prescriptions as measured in the ADEQUATE paediatric trial, the highest 
estimate of antibiotic prescriptions reduced would be 5.7% if both adults and 
children would be considered. Given this as the best case scenario, it seems unlikely 
that the interventions currently included in the ADEQUATE trial would have a 
measurable impact on AMR in the population as a whole. 

  

4.5. Budget impact of novel diagnostics 

As the PRUDENCE trial showed no reductions in antibiotic prescribing and 
incidence-estimates related to the ED consultations as relevant for ADEQUATE were 
too limited, it was not deemed relevant to calculate budget impact estimates based 
on the trial results. Using MERIAM, we can calculate the budget impact per 100,000 
population in a straightforward manner. We present a hypothetical example for the 
Netherlands in Figure 13 and   
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Table 13. This analysis assumed a 21% reduction in antibiotic prescriptions as a 
result of the hypothetical diagnostic algorithm based on the meta-analysis by 
Martínez-González et al117. On average, the diagnostic strategy increases the total 
costs with 9% at the €5 price point (price per test) and with 19% at the €10 price 
point over 10 years for a population of 100,000 individuals, with the only significant 
difference being the costs of the diagnostics. In the hypothetical diagnostic 
scenario fewer antibiotics were prescribed, but the cost savings are not sufficient 
to offset all costs of the additional POC tests. The hypothetical diagnostic strategy 
did not produce overall cost savings in any of the model replications. This analysis 
is described in full detail in a paper published by Van der Pol et al. as part of the 
VALUE-Dx project116. 

 

Figure 13 budget impact related to consultations for community-acquired 
respiratory tract infections in the period 2020-2030, per 100,000 individuals116 
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Table 13 10-year costs of the base-case and hypothetical diagnostic strategy 
scenarios at two price points (median, including 95% credible interval in brackets) 

 
Current standard-
of-care 

Incremental costs hypothetical 
diagnostic strategy  
€10 €5 

Antibiotics €868,100 
(€718,100 - 
€1,036,000) 

-€162,200 (-
€324,400 - 
€8,300) 

-€162,800 (-
€321,800 - 
€11,800) 

Consultations €5,119,500 
(€4,599,600 - 
€5,721,900) 

€0 (-€200 - €200) €0 (-€200 - 
€200) 

Diagnostics €199,300 
(€165,000 - 
€240,500) 

€1,282,300 
(€1,146,900 - 
€1,437,500) 

€640,900 
(€565,400 - 
€728,400) 

Training €0 (€0 - €0) €82,200 (€82,100 

- €82,200) 
€82,200 

(€82,100 - 

€82,200) 

Total €6,189,000 
(€5,554,900 - 
€6,907,700) 

€1,202,000 

(€999,100 - 

€1,425,400) 

€559,100 

(€391,600 - 

€757,800) 

 

4.6. Hypothetical example AMR forecasting 

As mentioned, a 28% reduction in BSP prescriptions was measured in the ADEQUATE 
paediatric trial. In Figure 14, we present a purely theoretical scenario where these 
results could be extrapolated to the full scope of national BSP prescriptions, and 
we apply the AMR forecast method as described in Chapter 3 for the countries 
included within the PRUDENCE and ADEQUATE trials. In line with our assumptions, 
a reduction in AMR is then simulated in all countries. 
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Figure 14 forecasts of antibiotic resistance of Streptococuus pneumoniae against broad-
spectrum penicillins (BSP). Historic data based on data collected in the TESSy database1, 
diagnostic scenario based on a purely theoretical scenario assuming a 28% reduction in all 
BSP prescriptions. 
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5. Lessons  related to the value of 
diagnostics 
 

5.1. Optimizing Diagnostic Value: New EU Regulations and the Future of 
Health Data Utilization 

In the next few years, we may see the effects of the new regulations from the 
European Union (EU) for market entry of non-pharmaceutical medical innovations: 
the MDR and IVDR. They aim to improve patient safety by requiring more robust 
clinical evidence before a new product can be brought to market. The clinical data 
collected for market authorization can likely be used to inform HTAs that focus on 
the actual effects a new diagnostic has on patients, instead of theoretical effects 
that are mainly relevant for laboratory technicians. Clinical evidence should focus 
on how the tests are used in practise by clinicians and patients and how relevant 
changes to the medical decision-making process are made. 

However, patient access is broader than gaining market access: they should also be 
implemented in clinical practice. As the clinical evidence supporting the 
introduction of novel tests will be more extensive under the new regulations, this 
may be used to inform the implementation. Currently, the long-term clinical 
evidence supporting economic evaluations of diagnostics is lacking. Using standard 
health-economic methods, the clinical effects can subsequently be extrapolated to 
longer time horizons118. 

Diagnostics do not provide direct improvements for patient health in most cases, 
different ways to assess their value may be required. In the case of infectious 
disease, the cost-effectiveness of a diagnostic strategy is highly dependent on the 
disease incidence. In the case of all diagnostics, the cost-effectiveness ultimately 
depends on the treatment options that follow. To construct cost-effective testing 
algorithms, it may be vital to look towards improved predictive models that aid in 
testing tailored populations that benefit from the test result. Little et al, compared 
care-as-usual, a clinical score and an antigen test combined with a clinical score 
for patients consulting a GP for acute sore throat in England. They found that the 
clinical score reduced antibiotic prescribing with 29%, but did not find an additional 
benefit related to the use of the antigen test119. Deciding whom to test may be very 
important for the testing strategy to remain cost-effective. In essence, testing is all 
about probabilities: test results change the probability of a patient having a specific 
condition, which in turn guides treatment decisions. Combining epidemiological 
data and patient characteristics may enable testing algorithms more tailored to the 
individual, and, as less tests need to be performed, improved cost effectiveness. As 
more health data become available and accessible, for example through the 
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European Health Data Space120, data scientists gain the tools to build better models 
to predict diseases. These models can be used to quantify the added value of 
specific tests for individual patients; using tests to fill in missing data points will 
change the probability of having the disease and be informative to estimate the 
effectiveness of specific treatment options.  

 

5.2. From a patient to a health system perspective 

In HTAs, the effectiveness and cost-effectiveness of new interventions usually is 
mainly considered from the perspective of individual patients. However, in the case 
of diagnostics for infectious disease we expect that the value is broader than that. 
The testing infrastructure and organisation is an essential part of European 
healthcare systems. To prioritize decisions and further improve this area, it is 
critical to have a better overview of these organisational aspects, regardless of 
where the tests are performed.  

As has become clear from the PRUDENCE trial, but also various studies that have 
been conducted before119,121, the implementation of POCTs is critical in achieving the 
potential impact of the tests. This requires a thorough overview of the existing 
diagnostic algorithms, the patient pathway, regulatory requirements, and the needs 
and expectations from clinicians. If the required change goes beyond the 
replacement of a current test with a new test, simply making available or 
reimbursing a new test will not be sufficient. Clinical guidelines will need to be 
updated and clinicians need to receive training on how to perform and act on the 
tests.  

Improving diagnosis may not always need the implementation of new tests. As 
mentioned in the previous subchapter, incidence data of different infections in the 
population can be incorporated in predictive models and combined with patient 
symptoms and characteristics to estimate the disease aetiology before any tests. 
These data are highly valuable and would usually be collected in public health 
surveillance systems. An integrated surveillance infrastructure would use data from 
advanced diagnostics to estimate in real-time the incidence of certain pathogens 
in the population.  Such an approach was researched for febrile illness in South-
East Asia, where regional surveillance data for diseases like dengue, scrub typhus, 
influenza and leptospirosis were collected using a relatively expensive multiplex 
PCR in the hospital setting to inform empirical treatment in rural areas79. Although 
the use of surveillance data only was not deemed to be cost-effective, combining 
surveillance data obtained with PCR tests with CRP testing at the individual patient 
level was considered to be highly cost-effective and was estimated to prevent 
hundreds of deaths while reducing antibiotic prescribing79.  

Further research could focus on the development and implementation of flexible 
diagnostic algorithms for infectious disease that recommend tests and treatment 
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in clinical practice based on the real-time aetiology of infections, while considering 
the overall cost effectiveness. This approach could also allow for more flexible 
antibiotic treatment options, as local resistance rates could feed into the system, 
preventing the use of antibiotics a patient is likely to be or become resistant to. 
Privacy of patients remains an important issue to consider in the context of large-
scale data collection but should not be a major barrier as aggregated test results 
should not be traceable to individuals. 
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6. Lessons related to the value of 
AMR-reducing interventions 
6.1. Challenges and opportunities related to the quality of data 

Experts warn of a post-antibiotic era13,122: a future which is difficult to predict, but 
would be detrimental to healthcare as we know it today. As can be seen from our 
forecasts of resistance, this is not something that seems likely if only current trends 
are extrapolated to the future. Globally however, in some countries resistance rates 
for specific bacterium-antibiotic pairs exceed 90%123. Considering the low number 
of new antibiotics in development124,125, the development and spread of these 
resistant bacteria needs to be prevented. In many cases, AMR develops by chance, 
as random mutations introduce a benefit to survival to resistant organisms126. This 
is the case for tuberculosis, caused by Mycobacterium tuberculosis, for which 
already variants exist that are resistant to all known antibiotics126,127. Surveillance 
of AMR is an important aspect to be able to act on changes in the population, e.g., 
by changing treatment guidelines.  

Looking at national resistance rates, the data used to support decision making 
currently is highly limited128: they are derived from a limited number of samples 
and primarily from the hospital setting. More standardized data from more different 
isolates would be key to have a better overview of AMR in EU countries and make 
estimates that are less prone to random variation which is caused by the limited 
number of included samples. The EU is investing heavily in cross-border health and 
pandemic preparedness through the Health Emergency preparedness and 
Response Authority (HERA)129,130. One of the included aspects is an intensive 
collaboration with the European Centre for Disease Prevention and Control (ECDC) 
to improve surveillance of potential pandemic pathogens129. During the COVID-19 
pandemic, the ECDC already played an important role in drafting guidelines131 and 
sharing relevant data132. One of the ECDC’s strategic goals for the coming years is to 
enhance surveillance and emergency preparedness by streamlining 
epidemiological information from existing systems133. If innovative, widely applied 
microbiological tests would feed into these surveillance systems, this can be used 
to identify potential threats faster, enabling authorities to hit hard and early to 
potentially prevent the next pandemic and related economic and health damage. 

Implementing diagnostics capable of detecting resistant organisms in a way where 
the collected data do not only benefit the individual patient but can also be used 
for AMR surveillance on the population level, can be highly beneficial. These data 
can be used to develop the personalized testing algorithms described earlier, to 
inform empirical treatment decisions, to develop improved AMR prediction models 
and to draft AMR-related policy. While having a good diagnostic infrastructure is 
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valuable during “inter-pandemic” times, it has become very evident during the 
COVID-19 pandemic that it is key to have an adequate testing infrastructure during 
pandemics and other outbreaks of infectious disease. 

 

 

 

6.2. Towards a generalizable framework to value AMR 

Improved diagnostics may play an important in preventing AMR. Still, the true value 
of this is difficult to predict and express in an ICER. Who knows whether the post-
antibiotic world will become a reality and what this will mean for modern 
healthcare? Considerable uncertainty stems from the fact that estimating the costs 
related to changes in resistance levels is complex13.   Additionally, the costs per 
QALY paradigm works well when thinking of a specific disease but is more 
complicated when thinking about broad public health investments, where it is 
impossible to a priori identify the benefits associated with the intervention. Within 
the framework of CEAs the goal is to maximize the total health gains, without 
regarding the distribution of these gains; for example globally or inter-
generationally11. Investments made from this public health perspective may need to 
be assessed differently from the investments we make in the health of individual 
patients. The health-economic toolset to determine which investments to make, 
may need to be adapted. 

There is inherent value in reducing AMR, as this contributes to preventing the worst-
case scenario, a post-antibiotic era. Dorgali et al. previously estimated that the WTP 
for containing AMR in the United Kingdom was around £8.35 billion annually134.  Like 
a WTP for a QALY, a WTP to safeguard the availability of antibiotics may make 
investment decisions in new antibiotics, effective diagnostics, or AMR stewardship 
interventions more straightforward to substantiate. This could be assessed within 
a discrete choice experiment134. An often-seen outcome in health-economic 
analyses is the reduction in DDDs or antibiotic prescriptions, as this is relatively 
easy to capture within trials and within modelling exercises, see also Deliverable 
5.1. Ideally, such a WTP would directly relate to reductions in antibiotic 
consumption. Alternatively, valuing AMR reductions within the context of Societal 
Cost Benefit Analyses may be a feasible approach that is transparent and 
interpretable for decision makers. 

In the Paris climate agreement, the international community agreed to limit global 
warming to 1.5 °C  above pre-industrial levels135. Specific goals to curb the spread 
of AMR could also be set. Within such a mission-oriented approach, budgets should 
be structured in a way so that the long-term AMR goals can be reached12. Any 
innovative intervention that aids in reaching these goals should be assessed based 
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on its relative contribution and investment, i.e., the AMR reduction in relation to the 
additional costs. 

Like the advanced models for climate change, that incorporate among others CO2 

emissions, and enable the calculation of increasing temperature and sea levels on 
the long term, we need a scientific consensus on the linkage of antibiotic 
consumption to antimicrobial resistance on the long term. Notably, it is important 
to find a method that does not oversimplify the matter, e.g., assuming perfect 
elasticity between the two may be problematic, but remains straightforward to 
implement in a range of scenarios. Such a model may not need to incorporate all 
the intricacies of AMR spread, such as transferring genes from one species of 
bacteria to another. However, it probably should consider differences in 
resistance development between species of bacteria, as well as multi-resistant 
bacteria. The model should be developed by a large team of experts in the fields 
of (clinical) microbiology, epidemiology, and health economics. Although we used 
a national scope for the current project, improved surveillance data would ideally 
allow such a model to incorporate a regional perspective, as regions within 
countries can have very different AMR rates136. 

Appropriate forecasts on how AMR will develop in the decades to come is a 
requirement for this model and for decision makers to estimate the impact of this 
issue. We used a machine learning approach in this project, which works quite 
well in extrapolating current trends, but may not be the most appropriate method 
for something as unpredictable as AMR. A reservoir of resistant organisms may 
build up in regions like former Soviet countries, North America, Sub-Saharan 
Africa and South-East Asia that may find their way into European countries123, 
which is not covered by the methods included in this project. Expert elicitation 
may be a more appropriate way to come to these estimates93, but is quite time 
consuming, especially if AMR rates for many countries and bacteria-antibiotic 
combinations have to be assessed simultaneously. A combination of expert 
elicitation and inclusion of statistical forecasting may be an optimal approach to 
come to appropriate forecasts of AMR on the long term. We expect that capturing 
these dynamics in a transmission model simply is not a feasible approach, with 
the exception of very specific pathogens such as Mycobacterium tuberculosis137.  
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7. Conclusions 
Within the VALUE-Dx project, we developed an innovative health-economic 
framework that allows for the assessment of novel POC diagnostics from a public 
health and economic perspective. This model, called MERIAM, was ready to be 
utilized to assess the value of the diagnostics included in the PRUDENCE trial. Due 
to the change in scope of the ADEQUATE trial, with a focus on children only, while 
MERIAM was already far in development, we were unable to include this trial in the 
analysis in the absence of results for the adult population. 

The PRUDENCE trial showed no effect of any of the included tests on antibiotic 
prescriptions or health outcomes. The health-economic conclusion can be rather 
straightforward: there is no reason to implement these diagnostics, as they were 
dominated by the standard of care. The standard of care was as effective and less 
costly. 

Lessons drawn from the PRUDENCE trial likely will inform future research on 
diagnostics in primary care and MERIAM can be used to assess these diagnostics 
from a health-economic and public health perspective. The model is adaptable in 
that it can accommodate various types of diagnostics and compare their impact 
from various perspectives. Additionally, other public health interventions could 
also make use of the framework developed within this task to advance their 
analyses. For example, vaccination programmes are a likely target to influence 
antibiotic prescriptions: citizens who do not have respiratory complaints, will not 
consider consulting a clinician and will not be prescribed an antibiotic.  

The work in task 5.4 has yielded other relevant information for future research in 
the field of diagnostics and ca-arti. We have provided guidance for the design and 
reporting of health-economic modelling of diagnostic interventions64. We have 
also provided disutility estimates related to ca-arti that can be applied to a 
wealth of HTAs of respiratory infections.  

In conclusion, although the scope of ADEQUATE and results of PRUDENCE did not 
warrant the application of MERIAM on the trial results at this time, we have 
developed a useful framework that has many applications within the field of 
health economics.  It certainly will be a useful tool for future research on the cost-
effectiveness of diagnostics of ca-arti.
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Appendices 
I. Results antibiotic consumption forecasts 

Raw results: Antimicrobial consumption forecasts 
Broad-spectrum penicillins, displayed in defined daily doses per 1,000 inhabitants 

 Exponential smoothing 

Austria 

2023 4.7 

2024 4.7 

2025 4.7 

2026 4.8 

2027 4.8 

2028 4.8 

2029 4.9 

2030 4.9 

2031 4.9 

2032 5 

2033 5 

2034 5 

2035 5.1 

2036 5.1 

2037 5.1 

2038 5.2 

2039 5.2 

2040 5.2 

Belgium 
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2023 8.3 (8 - 9.1) 

2024 8.2 (7.7 - 9.2) 

2025 8.1 (7.4 - 9.2) 

2026 8 (7.1 - 9.2) 

2027 7.9 (6.8 - 9.3) 

2028 7.9 (6.6 - 9.3) 

2029 7.9 (6.4 - 9.3) 

2030 7.9 (6.2 - 9.4) 

2031 7.9 (6 - 9.4) 

2032 7.9 (5.9 - 9.4) 

2033 7.9 (5.7 - 9.5) 

2034 7.9 (5.6 - 9.5) 

2035 7.9 (5.6 - 9.5) 

2036 8 (5.5 - 9.5) 

2037 8 (5.5 - 9.6) 

2038 8 (5.4 - 9.6) 

2039 8.1 (5.4 - 9.6) 

2040 8.1 (5.4 - 9.6) 

Bulgaria 

2023 5.1 (4.5 - 5.6) 

2024 5 (4.4 - 5.7) 

2025 5 (4.3 - 5.8) 

2026 5 (4.2 - 5.8) 

2027 5 (4.1 - 5.8) 

2028 5 (4 - 5.9) 
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2029 4.9 (3.9 - 6) 

2030 4.9 (3.8 - 6.1) 

2031 4.9 (3.7 - 6.1) 

2032 4.9 (3.6 - 6.1) 

2033 4.9 (3.6 - 6.2) 

2034 4.8 (3.5 - 6.2) 

2035 4.8 (3.4 - 6.2) 

2036 4.8 (3.4 - 6.3) 

2037 4.8 (3.4 - 6.3) 

2038 4.8 (3.3 - 6.3) 

2039 4.8 (3.3 - 6.3) 

2040 4.8 (3.3 - 6.4) 

Cyprus 

2023 9.6 (8.9 - 10.4) 

2024 9.6 (8.9 - 10.6) 

2025 9.6 (8.9 - 10.8) 

2026 9.6 (8.9 - 11.2) 

2027 9.6 (8.9 - 11.5) 

2028 9.6 (8.9 - 11.8) 

2029 9.6 (8.8 - 12.1) 

2030 9.6 (8.8 - 12.3) 

2031 9.7 (8.8 - 12.7) 

2032 9.7 (8.8 - 12.9) 

2033 9.7 (8.8 - 13.2) 

2034 9.7 (8.8 - 13.4) 
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2035 9.7 (8.8 - 13.8) 

2036 9.7 (8.8 - 14.3) 

2037 9.7 (8.8 - 14.8) 

2038 9.7 (8.7 - 15.4) 

2039 9.7 (8.7 - 15.9) 

2040 9.7 (8.7 - 16.5) 

Czechia 

2023 4.5 (3.8 - 5.8) 

2024 4.5 (3.6 - 5.8) 

2025 4.5 (3.3 - 5.8) 

2026 4.5 (3.1 - 5.8) 

2027 4.5 (2.9 - 5.8) 

2028 4.5 (2.7 - 5.8) 

2029 4.5 (2.6 - 5.8) 

2030 4.5 (2.4 - 5.9) 

2031 4.5 (2.3 - 5.9) 

2032 4.5 (2.2 - 5.9) 

2033 4.6 (2.1 - 5.9) 

2034 4.6 (2.1 - 6) 

2035 4.6 (2 - 6) 

2036 4.6 (2 - 6) 

2037 4.6 (2 - 6) 

2038 4.6 (2 - 6) 

2039 4.6 (2 - 6.1) 

2040 4.6 (2 - 6.1) 
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Germany 

2023 4.1 

2024 4.2 

2025 4.3 

2026 4.3 

2027 4.4 

2028 4.4 

2029 4.5 

2030 4.6 

2031 4.6 

2032 4.7 

2033 4.7 

2034 4.8 

2035 4.8 

2036 4.9 

2037 4.9 

2038 5 

2039 5.1 

2040 5.1 

Denmark 

2023 4.6 

2024 4.6 

2025 4.6 

2026 4.6 

2027 4.6 
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2028 4.6 

2029 4.6 

2030 4.7 

2031 4.7 

2032 4.7 

2033 4.7 

2034 4.7 

2035 4.7 

2036 4.7 

2037 4.7 

2038 4.7 

2039 4.7 

2040 4.7 

Estonia 

2023 3.6 (2.3 - 4.6) 

2024 3.7 (2.3 - 4.8) 

2025 3.7 (2.2 - 5.1) 

2026 3.7 (2.2 - 5.4) 

2027 3.7 (2.2 - 5.7) 

2028 3.8 (2.2 - 6) 

2029 3.8 (2.2 - 6.3) 

2030 3.8 (2.2 - 6.6) 

2031 3.8 (2.3 - 6.9) 

2032 3.8 (2.3 - 7.3) 

2033 3.9 (2.3 - 7.7) 
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2034 3.9 (2.3 - 8.1) 

2035 3.9 (2.3 - 8.5) 

2036 3.9 (2.3 - 9) 

2037 3.9 (2.3 - 9.4) 

2038 3.9 (2.3 - 9.9) 

2039 3.9 (2.3 - 10.5) 

2040 3.9 (2.3 - 11) 

Spain 

2023 12.1 

2024 12.2 

2025 12.4 

2026 12.5 

2027 12.7 

2028 12.8 

2029 13 

2030 13.1 

2031 13.2 

2032 13.4 

2033 13.5 

2034 13.6 

2035 13.8 

2036 13.9 

2037 14 

2038 14.1 

2039 14.3 
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2040 14.4 

Finland 

2023 2.6 (1.9 - 3.8) 

2024 2.5 (1.6 - 3.8) 

2025 2.4 (1.4 - 3.8) 

2026 2.4 (1.3 - 3.8) 

2027 2.3 (1.1 - 3.8) 

2028 2.3 (1 - 3.8) 

2029 2.3 (0.9 - 3.8) 

2030 2.3 (0.8 - 3.8) 

2031 2.3 (0.7 - 3.8) 

2032 2.3 (0.7 - 3.8) 

2033 2.3 (0.6 - 3.8) 

2034 2.3 (0.6 - 3.8) 

2035 2.3 (0.6 - 3.8) 

2036 2.4 (0.5 - 3.8) 

2037 2.4 (0.5 - 3.8) 

2038 2.4 (0.5 - 3.8) 

2039 2.5 (0.5 - 3.8) 

2040 2.5 (0.5 - 3.8) 

France 

2023 13.1 

2024 13.1 

2025 13.2 

2026 13.2 
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2027 13.2 

2028 13.2 

2029 13.2 

2030 13.3 

2031 13.3 

2032 13.3 

2033 13.3 

2034 13.3 

2035 13.3 

2036 13.3 

2037 13.3 

2038 13.3 

2039 13.3 

2040 13.3 

United Kingdom 

2023 5.1 (3.9 - 7.2) 

2024 5.1 (3.9 - 7.5) 

2025 5.1 (3.8 - 7.7) 

2026 5.1 (3.7 - 7.8) 

2027 5.1 (3.7 - 7.9) 

2028 5.1 (3.6 - 8.1) 

2029 5.1 (3.6 - 8.2) 

2030 5.2 (3.6 - 8.3) 

2031 5.2 (3.6 - 8.4) 

2032 5.2 (3.6 - 8.6) 
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2033 5.2 (3.6 - 8.7) 

2034 5.2 (3.6 - 8.8) 

2035 5.2 (3.6 - 8.9) 

2036 5.2 (3.7 - 9) 

2037 5.2 (3.7 - 9.1) 

2038 5.2 (3.7 - 9.3) 

2039 5.3 (3.7 - 9.4) 

2040 5.3 (3.8 - 9.5) 

Greece 

2023 12.1 (10.8 - 12.9) 

2024 12.3 (10.8 - 13.5) 

2025 12.5 (10.8 - 14.2) 

2026 12.8 (10.9 - 14.9) 

2027 13 (10.9 - 15.7) 

2028 13.2 (10.9 - 16.6) 

2029 13.4 (10.9 - 17.5) 

2030 13.6 (10.9 - 18.5) 

2031 13.8 (10.9 - 19.6) 

2032 14 (10.9 - 20.9) 

2033 14.1 (11 - 22.2) 

2034 14.3 (11 - 23.6) 

2035 14.5 (11 - 25.2) 

2036 14.7 (11 - 26.9) 

2037 14.9 (11 - 28.7) 

2038 15.1 (11 - 30.6) 
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2039 15.3 (11 - 32.7) 

2040 15.4 (11.1 - 34.9) 

Croatia 

2023 9.2 

2024 10.3 

2025 11.4 

2026 12.5 

2027 13.7 

2028 14.8 

2029 15.9 

2030 17 

2031 18.1 

2032 19.3 

2033 20.4 

2034 21.5 

2035 22.6 

2036 23.8 

2037 24.9 

2038 26 

2039 27.1 

2040 28.3 

Hungary 

2023 4.2 

2024 4.2 

2025 4.1 
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2026 4.1 

2027 4.1 

2028 4.1 

2029 4 

2030 4 

2031 4 

2032 4 

2033 4 

2034 4 

2035 3.9 

2036 3.9 

2037 3.9 

2038 3.9 

2039 3.9 

2040 3.9 

Ireland 

2023 7.7 

2024 7.7 

2025 7.8 

2026 7.8 

2027 7.8 

2028 7.8 

2029 7.8 

2030 7.9 

2031 7.9 



 

Version 01    
89 

2032 7.9 

2033 7.9 

2034 7.9 

2035 7.9 

2036 7.9 

2037 7.9 

2038 7.9 

2039 7.9 

2040 7.9 

Iceland 

2023 6.2 (5.7 - 6.7) 

2024 6.2 (5.6 - 6.7) 

2025 6.2 (5.6 - 6.8) 

2026 6.2 (5.5 - 6.9) 

2027 6.2 (5.4 - 6.9) 

2028 6.2 (5.4 - 7) 

2029 6.2 (5.4 - 7.1) 

2030 6.2 (5.4 - 7.2) 

2031 6.2 (5.3 - 7.3) 

2032 6.2 (5.3 - 7.3) 

2033 6.2 (5.3 - 7.4) 

2034 6.2 (5.3 - 7.5) 

2035 6.2 (5.3 - 7.6) 

2036 6.2 (5.3 - 7.7) 

2037 6.3 (5.3 - 7.8) 
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2038 6.3 (5.3 - 7.9) 

2039 6.3 (5.3 - 8) 

2040 6.3 (5.3 - 8.1) 

Italy 

2023 8 

2024 7.8 

2025 7.7 

2026 7.6 

2027 7.5 

2028 7.4 

2029 7.4 

2030 7.3 

2031 7.3 

2032 7.3 

2033 7.4 

2034 7.4 

2035 7.4 

2036 7.4 

2037 7.5 

2038 7.5 

2039 7.6 

2040 7.6 

Lithuania 

2023 6.8 (6.5 - 7.3) 

2024 6.8 (6.5 - 7.3) 
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2025 6.8 (6.4 - 7.4) 

2026 6.8 (6.4 - 7.4) 

2027 6.8 (6.4 - 7.5) 

2028 6.8 (6.3 - 7.5) 

2029 6.8 (6.3 - 7.6) 

2030 6.8 (6.3 - 7.6) 

2031 6.8 (6.2 - 7.7) 

2032 6.8 (6.2 - 7.7) 

2033 6.9 (6.1 - 7.8) 

2034 6.9 (6.1 - 7.8) 

2035 6.9 (6.1 - 7.9) 

2036 6.9 (6 - 8) 

2037 6.9 (6 - 8) 

2038 6.9 (6 - 8.1) 

2039 6.9 (6 - 8.1) 

2040 6.9 (5.9 - 8.2) 

Luxembourg 

2023 6.8 

2024 6.6 

2025 6.6 

2026 6.5 

2027 6.4 

2028 6.4 

2029 6.4 

2030 6.4 
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2031 6.4 

2032 6.4 

2033 6.4 

2034 6.5 

2035 6.5 

2036 6.6 

2037 6.6 

2038 6.7 

2039 6.7 

2040 6.8 

Latvia 

2023 6.1 

2024 6.9 

2025 7.6 

2026 8.3 

2027 9.1 

2028 9.8 

2029 10.5 

2030 11.3 

2031 12 

2032 12.8 

2033 13.5 

2034 14.2 

2035 15 

2036 15.7 
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2037 16.5 

2038 17.2 

2039 18 

2040 18.7 

Malta 

2023 7.1 (6.7 - 7.5) 

2024 7.1 (6.7 - 7.6) 

2025 7.2 (6.7 - 7.7) 

2026 7.2 (6.7 - 7.7) 

2027 7.2 (6.7 - 7.8) 

2028 7.2 (6.7 - 7.9) 

2029 7.2 (6.7 - 8) 

2030 7.3 (6.7 - 8.1) 

2031 7.3 (6.7 - 8.2) 

2032 7.3 (6.7 - 8.2) 

2033 7.3 (6.7 - 8.3) 

2034 7.3 (6.7 - 8.3) 

2035 7.3 (6.7 - 8.4) 

2036 7.3 (6.7 - 8.5) 

2037 7.3 (6.7 - 8.5) 

2038 7.4 (6.7 - 8.6) 

2039 7.4 (6.7 - 8.7) 

2040 7.4 (6.7 - 8.8) 

Netherlands 

2023 2.1 
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2024 2 

2025 2 

2026 2 

2027 1.9 

2028 1.9 

2029 1.8 

2030 1.8 

2031 1.8 

2032 1.7 

2033 1.7 

2034 1.7 

2035 1.6 

2036 1.6 

2037 1.6 

2038 1.6 

2039 1.5 

2040 1.5 

Norway 

2023 2.2 

2024 2.2 

2025 2.2 

2026 2.2 

2027 2.2 

2028 2.2 

2029 2.2 
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2030 2.2 

2031 2.2 

2032 2.2 

2033 2.2 

2034 2.2 

2035 2.2 

2036 2.2 

2037 2.2 

2038 2.2 

2039 2.2 

2040 2.2 

Poland 

2023 7.1 (6.6 - 7.9) 

2024 7 (6.5 - 7.9) 

2025 6.9 (6.4 - 7.9) 

2026 6.9 (6.3 - 7.9) 

2027 6.8 (6.2 - 7.9) 

2028 6.7 (6.1 - 7.9) 

2029 6.7 (6 - 7.9) 

2030 6.6 (6 - 7.9) 

2031 6.6 (5.9 - 7.9) 

2032 6.5 (5.8 - 7.9) 

2033 6.5 (5.7 - 7.9) 

2034 6.5 (5.7 - 7.9) 

2035 6.4 (5.6 - 7.9) 
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2036 6.4 (5.5 - 7.9) 

2037 6.4 (5.5 - 7.9) 

2038 6.3 (5.4 - 7.9) 

2039 6.3 (5.4 - 7.9) 

2040 6.3 (5.3 - 7.9) 

Portugal 

2023 7.8 (7.6 - 8.1) 

2024 7.8 (7.5 - 8.1) 

2025 7.8 (7.5 - 8.1) 

2026 7.7 (7.4 - 8.1) 

2027 7.7 (7.4 - 8.1) 

2028 7.7 (7.3 - 8.1) 

2029 7.7 (7.3 - 8.1) 

2030 7.7 (7.2 - 8) 

2031 7.7 (7.2 - 8) 

2032 7.7 (7.1 - 8) 

2033 7.6 (7.1 - 8) 

2034 7.6 (7 - 8) 

2035 7.6 (7 - 8) 

2036 7.6 (7 - 8) 

2037 7.6 (6.9 - 8) 

2038 7.6 (6.9 - 8) 

2039 7.6 (6.8 - 8) 

2040 7.6 (6.8 - 8) 

Slovenia 
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2023 4.9 

2024 4.9 

2025 4.9 

2026 4.9 

2027 4.9 

2028 5 

2029 5 

2030 5 

2031 5 

2032 5 

2033 5 

2034 5 

2035 5 

2036 5 

2037 5 

2038 5 

2039 5 

2040 5 

Slovakia 

2023 3.7 (3.6 - 4.2) 

2024 3.6 (3.5 - 4.3) 

2025 3.5 (3.4 - 4.3) 

2026 3.4 (3.3 - 4.3) 

2027 3.4 (3.2 - 4.4) 

2028 3.3 (3.1 - 4.4) 
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2029 3.2 (3 - 4.5) 

2030 3.2 (3 - 4.5) 

2031 3.1 (2.9 - 4.6) 

2032 3.1 (2.8 - 4.6) 

2033 3 (2.7 - 4.7) 

2034 2.9 (2.7 - 4.7) 

2035 2.9 (2.6 - 4.8) 

2036 2.8 (2.5 - 4.8) 

2037 2.8 (2.5 - 4.9) 

2038 2.8 (2.4 - 4.9) 

2039 2.7 (2.4 - 5) 

2040 2.7 (2.3 - 5.1) 

95% credible intervals are displayed between brackets, where applicable 

Based on antimicrobial consumption rates collected with ECDC's TESSy database 
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Accuracy of antimicrobial consumption forecasts 

RMSE - broad-spectrum penicillins 
 

 Exponential smoothing 

Austria 1.629 

Belgium 1.805 (1.466 - 2.619) 

Bulgaria 0.489 (0.248 - 1.676) 

Cyprus 3.168 (2.726 - 3.655) 

Czechia 1.59 (0.61 - 3.006) 

Germany 0.514 

Denmark 0.788 

Estonia 0.371 (0.232 - 0.874) 

Spain 4.185 

Finland 0.685 (0.653 - 1.135) 

France 2.451 

United Kingdom 0.814 (0.231 - 1.845) 

Greece 4.447 (4.159 - 4.986) 

Croatia 16.72 
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Hungary 0.703 

Ireland 1.971 

Iceland 1.535 (0.9 - 2.29) 

Italy 2.156 

Lithuania 1.084 (1.012 - 1.476) 

Luxembourg 2.261 

Latvia 3.326 

Malta 1.299 (1.268 - 1.527) 

Netherlands 0.246 

Norway 0.186 

Poland 3.329 (3.31 - 3.549) 

Portugal 1.048 (1.02 - 1.166) 

Slovenia 1.013 

Slovakia 1.273 (1.13 - 1.569) 

95% credible intervals are displayed between brackets, where applicable 

Based on antimicrobial consumption rates collected with ECDC's TESSy database 
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II. Results antimicrobial resistance forecasts 

Antimicrobial resistance forecasts 
 
Streptococcus pneumonia against broad-spectrum penicillins 

 Exponential smoothing Random forest XGBoost Ensemble 

United Kingdom 

2020 6.2% 6.6% (6.4 - 7.6) 8.8% (8.1 - 11.3) 7.2% (6.9 - 8.3) 

2021 6.4% 6.8% (6.4 - 7.7) 7.2% (6.6 - 9.1) 6.8% (6.5 - 7.7) 

2022 6.6% 6.9% (6.6 - 8) 7% (6.5 - 8.3) 6.8% (6.6 - 7.6) 

2023 6.7% 6.9% (6.6 - 8) 7.1% (6.6 - 8.3) 6.9% (6.7 - 7.6) 

2024 6.9% 6.8% (6.5 - 7.9) 7% (6.6 - 8.1) 6.9% (6.7 - 7.5) 

2025 7.1% 7.1% (6.7 - 8.2) 7% (6.6 - 8.1) 7.1% (6.8 - 7.7) 

2026 7.3% 7.1% (6.7 - 8.3) 7% (6.5 - 8.1) 7.1% (6.9 - 7.8) 

2027 7.5% 7.1% (6.7 - 8.3) 6.9% (6.5 - 8) 7.2% (7 - 7.8) 

2028 7.6% 7.1% (6.7 - 8.3) 7.4% (6.9 - 8.7) 7.4% (7.1 - 8.1) 

2029 7.8% 7.1% (6.8 - 8.3) 7.7% (7.2 - 9.1) 7.6% (7.3 - 8.3) 

2030 8% 7.2% (6.9 - 8.4) 7.8% (7.2 - 9.1) 7.7% (7.4 - 8.4) 

2031 8.1% 7.2% (6.9 - 8.5) 8% (7.4 - 9.5) 7.8% (7.5 - 8.6) 

2032 8.3% 7.3% (6.9 - 8.5) 8.1% (7.4 - 9.6) 7.9% (7.6 - 8.7) 

2033 8.4% 7.2% (6.8 - 8.5) 8.1% (7.5 - 9.6) 7.9% (7.6 - 8.7) 

2034 8.6% 7.3% (6.9 - 8.5) 8.2% (7.5 - 9.6) 8% (7.7 - 8.9) 

2035 8.7% 7.4% (7 - 8.6) 8.2% (7.6 - 9.8) 8.1% (7.8 - 9) 

2036 8.9% 7.3% (6.9 - 8.6) 8.3% (7.6 - 9.8) 8.2% (7.9 - 9) 

2037 9% 7.2% (6.8 - 8.6) 8.3% (7.7 - 9.9) 8.2% (7.9 - 9.1) 

2038 9.2% 7.3% (6.8 - 8.6) 8.4% (7.7 - 9.9) 8.3% (8 - 9.1) 

2039 9.3% 7.2% (6.7 - 8.5) 8.4% (7.7 - 9.9) 8.3% (8 - 9.2) 

2040 9.5% 7.2% (6.7 - 8.5) 8.4% (7.7 - 9.9) 8.4% (8.1 - 9.2) 

Austria 

2023 4.6% 5.3% (5.2 - 5.4) 6.8% (6.5 - 7.2) 5.6% (5.5 - 5.8) 

2024 4.6% 5.4% (5.3 - 5.5) 6.8% (6.5 - 7.2) 5.6% (5.5 - 5.8) 

2025 4.6% 5.3% (5.2 - 5.5) 6.8% (6.5 - 7.2) 5.6% (5.5 - 5.8) 

2026 4.6% 5.4% (5.3 - 5.6) 6.9% (6.5 - 7.3) 5.7% (5.5 - 5.8) 

2027 4.6% 5.4% (5.3 - 5.6) 7.1% (6.7 - 7.5) 5.7% (5.6 - 5.9) 

2028 4.6% 5.4% (5.3 - 5.6) 7.3% (6.8 - 7.8) 5.8% (5.6 - 6.1) 

2029 4.6% 5.5% (5.3 - 5.6) 7.4% (6.9 - 7.9) 5.8% (5.6 - 6.1) 

2030 4.6% 5.5% (5.4 - 5.7) 7.5% (7 - 8) 5.9% (5.7 - 6.2) 

2031 4.6% 5.5% (5.3 - 5.7) 7.5% (7 - 8.1) 5.9% (5.7 - 6.2) 

2032 4.6% 5.5% (5.3 - 5.7) 7.6% (7.1 - 8.1) 5.9% (5.7 - 6.2) 
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 Exponential smoothing Random forest XGBoost Ensemble 

2033 4.6% 5.6% (5.4 - 5.8) 7.6% (7.1 - 8.1) 5.9% (5.7 - 6.2) 

2034 4.6% 5.6% (5.4 - 5.8) 7.6% (7.1 - 8.1) 6% (5.7 - 6.2) 

2035 4.6% 5.6% (5.4 - 5.8) 7.6% (7.1 - 8.1) 6% (5.8 - 6.2) 

2036 4.6% 5.6% (5.4 - 5.9) 7.6% (7.1 - 8.1) 6% (5.8 - 6.3) 

2037 4.6% 5.7% (5.5 - 5.9) 7.6% (7.1 - 8.1) 6% (5.8 - 6.2) 

2038 4.6% 5.8% (5.6 - 6) 7.6% (7.1 - 8.2) 6% (5.8 - 6.3) 

2039 4.6% 5.5% (5.3 - 5.7) 7.7% (7.2 - 8.2) 5.9% (5.7 - 6.3) 

2040 4.6% 5.5% (5.3 - 5.7) 7.7% (7.2 - 8.2) 6% (5.7 - 6.3) 

Belgium 

2023 14% 12.7% (11.5 - 13.1) 7.6% (7.1 - 8.1) 11.4% (10.7 - 11.6) 

2024 13.9% 12.4% (11.1 - 12.8) 7.6% (7.1 - 8.1) 11.3% (10.6 - 11.5) 

2025 13.8% 12% (10.7 - 12.4) 7.6% (7.1 - 8.1) 11.1% (10.6 - 11.4) 

2026 13.8% 11.4% (10.3 - 11.8) 8.3% (7.7 - 9.1) 11.1% (10.7 - 11.4) 

2027 13.7% 11.3% (10.2 - 11.7) 8.4% (7.7 - 9.1) 11.1% (10.7 - 11.4) 

2028 13.7% 11.2% (10.1 - 11.6) 8.7% (7.9 - 9.4) 11.2% (10.7 - 11.5) 

2029 13.6% 11% (10 - 11.4) 9.1% (8.2 - 9.9) 11.2% (10.8 - 11.6) 

2030 13.6% 10.9% (9.9 - 11.3) 9.1% (8.3 - 9.9) 11.2% (10.7 - 11.6) 

2031 13.6% 10.8% (9.6 - 11.2) 9.1% (8.1 - 10) 11.2% (10.5 - 11.5) 

2032 13.6% 10.7% (9.5 - 11.1) 9.2% (8.1 - 10) 11.2% (10.5 - 11.6) 

2033 13.6% 10.7% (9.4 - 11.1) 9.5% (8.4 - 10.3) 11.2% (10.6 - 11.7) 

2034 13.6% 10.5% (9.2 - 11.1) 9.6% (8.5 - 10.4) 11.2% (10.5 - 11.7) 

2035 13.6% 10.5% (9.1 - 11) 9.6% (8.5 - 10.5) 11.2% (10.5 - 11.7) 

2036 13.6% 10.5% (9.1 - 11) 9.6% (8.4 - 10.5) 11.2% (10.4 - 11.7) 

2037 13.6% 10.5% (9.1 - 11) 9.6% (8.5 - 10.6) 11.2% (10.4 - 11.8) 

2038 13.6% 10.5% (9.1 - 11) 9.7% (8.5 - 10.6) 11.3% (10.4 - 11.8) 

2039 13.6% 10.5% (9.1 - 11) 9.7% (8.6 - 10.6) 11.3% (10.4 - 11.8) 

2040 13.5% 10.4% (9 - 11) 9.8% (8.6 - 10.7) 11.3% (10.5 - 11.8) 

Bulgaria 

2023 14.6% (9.2 - 23.5) 18.8% (11.9 - 30.8) 22.3% (18.5 - 25.7) 18.5% (13.7 - 25.9) 

2024 14.3% (8.8 - 23.6) 16.5% (10.4 - 27.1) 21.1% (17.4 - 24.3) 17.3% (12.8 - 24.3) 

2025 14% (8.4 - 23.7) 17.8% (10.6 - 28.9) 21.7% (17.3 - 25) 17.8% (12.9 - 25.2) 

2026 13.7% (8 - 23.9) 18.5% (10.9 - 29.9) 21.6% (17.4 - 25.1) 18% (12.8 - 25.6) 

2027 13.5% (7.7 - 23.8) 18.9% (11.4 - 29.6) 21.7% (17.7 - 25.1) 18% (12.9 - 25.4) 

2028 13.3% (7.3 - 23.8) 19.6% (12.5 - 29.5) 21.8% (18 - 25.2) 18.2% (13.3 - 25.6) 

2029 13.1% (7 - 23.9) 19.3% (13.5 - 27.7) 21.5% (17.9 - 24.8) 17.9% (13.4 - 25) 

2030 12.9% (6.7 - 24) 19.2% (13.8 - 27.1) 21.5% (18 - 24.7) 17.8% (13.4 - 24.8) 

2031 12.7% (6.4 - 24.1) 19.1% (13.8 - 26.9) 21.4% (17.9 - 24.6) 17.7% (13.2 - 24.8) 
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2032 12.6% (6 - 24.1) 18.7% (13.6 - 26.2) 21.4% (17.9 - 24.6) 17.5% (13.2 - 24.7) 

2033 12.4% (5.8 - 24.2) 18.5% (13.5 - 26) 21.4% (17.8 - 24.7) 17.4% (13 - 24.6) 

2034 12.2% (5.5 - 24.2) 18.5% (13.4 - 25.7) 21.4% (17.9 - 24.6) 17.3% (12.9 - 24.6) 

2035 12.1% (5.3 - 24.3) 18.4% (13.3 - 25.5) 21.2% (17.7 - 24.5) 17.1% (12.8 - 24.6) 

2036 11.9% (5 - 24.3) 18.4% (13.3 - 25.5) 21.3% (17.8 - 24.6) 17% (12.7 - 24.6) 

2037 11.7% (4.8 - 24.4) 18.3% (13.2 - 25.4) 21.3% (17.8 - 24.6) 17% (12.6 - 24.6) 

2038 11.6% (4.6 - 24.5) 18.3% (13.1 - 25.4) 21.3% (17.9 - 24.7) 17% (12.6 - 24.6) 

2039 11.5% (4.4 - 24.6) 17.6% (13 - 23.8) 20.2% (17.1 - 23.3) 16.3% (12.1 - 23.5) 

2040 11.3% (4.2 - 24.8) 17.5% (13 - 23.4) 20% (17 - 23.3) 16.2% (12.1 - 23.3) 

Czechia 

2023 5.3% 6.3% (6.1 - 6.5) 9.3% (8.6 - 10.2) 7% (6.7 - 7.4) 

2024 5.4% 6.3% (6.1 - 6.6) 9.3% (8.6 - 10.2) 7% (6.8 - 7.5) 

2025 5.5% 6.6% (6.3 - 7.1) 9.5% (8.7 - 10.7) 7.2% (6.9 - 7.8) 

2026 5.6% 6.6% (6.4 - 7.3) 9.6% (8.8 - 10.8) 7.3% (7 - 7.9) 

2027 5.7% 7% (6.6 - 7.7) 9.5% (8.6 - 10.7) 7.4% (7.1 - 8) 

2028 5.8% 7.3% (7 - 8.3) 8.4% (7.7 - 9.5) 7.2% (6.9 - 7.7) 

2029 5.9% 7.4% (7.1 - 8.6) 8.5% (7.8 - 9.7) 7.3% (7 - 7.9) 

2030 6% 7.5% (7.1 - 8.8) 8.9% (8.1 - 10.2) 7.5% (7.2 - 8.2) 

2031 6.1% 7.6% (7.2 - 9) 8.9% (8 - 10.2) 7.5% (7.2 - 8.3) 

2032 6.2% 7.7% (7.3 - 9.1) 8.7% (7.9 - 10.1) 7.6% (7.2 - 8.3) 

2033 6.4% 7.7% (7.3 - 9.1) 8.7% (7.9 - 10.1) 7.6% (7.2 - 8.4) 

2034 6.5% 7.7% (7.3 - 9.1) 8.9% (8 - 10.3) 7.7% (7.3 - 8.5) 

2035 6.6% 7.8% (7.4 - 9.2) 9% (8.1 - 10.4) 7.8% (7.4 - 8.6) 

2036 6.7% 7.8% (7.5 - 9.3) 9% (8.2 - 10.5) 7.8% (7.5 - 8.6) 

2037 6.8% 7.9% (7.5 - 9.4) 9.1% (8.2 - 10.5) 7.9% (7.6 - 8.7) 

2038 6.9% 7.9% (7.5 - 9.3) 9.1% (8.2 - 10.5) 8% (7.6 - 8.8) 

2039 7% 7.9% (7.6 - 9.3) 9.1% (8.3 - 10.6) 8% (7.7 - 8.8) 

2040 7.1% 8% (7.6 - 9.3) 9.1% (8.3 - 10.6) 8.1% (7.7 - 8.9) 

Germany 

2023 6.3% 6.5% (6.4 - 6.6) 8.2% (7.7 - 8.7) 7% (6.8 - 7.3) 

2024 6.5% 6.6% (6.5 - 6.7) 8.1% (7.6 - 8.6) 7.1% (6.9 - 7.4) 

2025 6.7% 6.6% (6.5 - 6.7) 8% (7.5 - 8.6) 7.1% (6.9 - 7.4) 

2026 6.9% 6.5% (6.4 - 6.6) 7.9% (7.4 - 8.4) 7.1% (6.9 - 7.4) 

2027 7% 6.5% (6.3 - 6.7) 7.9% (7.4 - 8.4) 7.2% (7 - 7.5) 

2028 7.2% 6.5% (6.3 - 6.6) 7.9% (7.4 - 8.4) 7.2% (7 - 7.6) 

2029 7.4% 6.5% (6.3 - 6.6) 7.9% (7.4 - 8.5) 7.3% (7.1 - 7.7) 

2030 7.5% 6.5% (6.3 - 6.7) 7.9% (7.4 - 8.4) 7.3% (7.1 - 7.8) 
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2031 7.7% 6.5% (6.3 - 6.7) 7.9% (7.4 - 8.4) 7.4% (7.2 - 7.9) 

2032 7.9% 6.5% (6.3 - 6.7) 7.9% (7.4 - 8.4) 7.4% (7.2 - 8) 

2033 8% 6.4% (6.2 - 6.6) 7.9% (7.4 - 8.4) 7.5% (7.3 - 8.1) 

2034 8.2% 6.3% (6.2 - 6.5) 8% (7.5 - 8.5) 7.5% (7.3 - 8.2) 

2035 8.4% 6.4% (6.2 - 6.6) 8% (7.5 - 8.5) 7.6% (7.4 - 8.3) 

2036 8.5% 6.3% (6.1 - 6.5) 8.1% (7.6 - 8.6) 7.6% (7.4 - 8.4) 

2037 8.7% 6.3% (6.1 - 6.5) 8.2% (7.7 - 8.7) 7.7% (7.5 - 8.5) 

2038 8.8% 6.3% (6.1 - 6.5) 8.2% (7.6 - 8.7) 7.8% (7.6 - 8.6) 

2039 9% 6.3% (6.1 - 6.5) 8.2% (7.7 - 8.7) 7.8% (7.6 - 8.7) 

2040 9.1% 6.3% (6.1 - 6.6) 8.2% (7.7 - 8.7) 7.9% (7.7 - 8.7) 

Denmark 

2023 6.1% 5.1% (5 - 5.3) 6.8% (6.4 - 7.2) 6% (5.9 - 6.5) 

2024 6.2% 5.5% (5.3 - 5.6) 6.8% (6.4 - 7.2) 6.2% (6 - 6.6) 

2025 6.4% 5.5% (5.3 - 5.6) 6.8% (6.4 - 7.2) 6.2% (6.1 - 6.7) 

2026 6.5% 5.5% (5.4 - 5.7) 7% (6.6 - 7.4) 6.4% (6.2 - 6.9) 

2027 6.7% 5.5% (5.4 - 5.7) 7.1% (6.7 - 7.6) 6.5% (6.3 - 7) 

2028 6.8% 5.6% (5.4 - 5.7) 7.2% (6.7 - 7.7) 6.5% (6.3 - 7.1) 

2029 7% 5.6% (5.4 - 5.7) 7.2% (6.7 - 7.7) 6.6% (6.4 - 7.2) 

2030 7.1% 5.4% (5.2 - 5.5) 6.6% (6.2 - 7.1) 6.4% (6.2 - 7) 

2031 7.3% 5.4% (5.2 - 5.5) 6.7% (6.2 - 7.1) 6.4% (6.3 - 7.1) 

2032 7.4% 5.3% (5.2 - 5.5) 6.7% (6.2 - 7.1) 6.5% (6.3 - 7.2) 

2033 7.6% 5.3% (5.2 - 5.5) 6.7% (6.2 - 7.1) 6.5% (6.3 - 7.2) 

2034 7.7% 5.3% (5.2 - 5.5) 6.7% (6.2 - 7.1) 6.6% (6.4 - 7.3) 

2035 7.8% 5.4% (5.2 - 5.6) 6.7% (6.2 - 7.1) 6.6% (6.5 - 7.4) 

2036 8% 5.4% (5.2 - 5.5) 6.7% (6.2 - 7.1) 6.7% (6.5 - 7.4) 

2037 8.1% 5.3% (5.1 - 5.5) 7.3% (6.8 - 7.8) 6.9% (6.7 - 7.8) 

2038 8.3% 5% (4.8 - 5.2) 6.7% (6.3 - 7.3) 6.7% (6.5 - 7.6) 

2039 8.4% 5.2% (5 - 5.4) 7.3% (6.7 - 7.8) 7% (6.8 - 8) 

2040 8.5% 5.5% (5.3 - 5.7) 7.5% (7 - 8.1) 7.2% (7 - 8.1) 

Estonia 

2023 4.5% (3.6 - 5.9) 4.9% (4.7 - 5.2) 6.9% (6.4 - 8) 5.5% (5.1 - 6.1) 

2024 4.7% (3.6 - 6.7) 4.8% (4.7 - 5.1) 6.9% (6.3 - 8) 5.6% (5.1 - 6.3) 

2025 4.9% (3.7 - 7.5) 5.2% (5 - 5.6) 7.7% (6.9 - 9) 6.1% (5.4 - 7.1) 

2026 5.1% (3.7 - 8.4) 5.3% (5.1 - 5.7) 7.8% (7 - 9.1) 6.2% (5.5 - 7.4) 

2027 5.3% (3.8 - 9.4) 5.5% (5.2 - 5.8) 8.7% (7.7 - 10.1) 6.7% (5.8 - 8.2) 

2028 5.5% (3.8 - 10.5) 6% (5.7 - 6.4) 8.4% (7.4 - 9.8) 6.8% (5.9 - 8.6) 

2029 5.7% (3.9 - 11.6) 6.2% (5.9 - 6.7) 8.2% (7.2 - 9.7) 6.9% (6 - 9) 
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2030 5.9% (3.9 - 12.8) 6.6% (6.3 - 7.1) 7.5% (6.7 - 8.8) 6.8% (5.9 - 9.3) 

2031 6.1% (3.9 - 14.1) 6.7% (6.3 - 7.3) 7.5% (6.7 - 8.9) 6.9% (5.9 - 9.8) 

2032 6.4% (3.9 - 15.5) 6.7% (6.4 - 7.4) 7.6% (6.8 - 8.9) 7% (6 - 10.3) 

2033 6.6% (4 - 16.9) 6.8% (6.4 - 7.5) 7.6% (6.7 - 8.9) 7.1% (6 - 10.8) 

2034 6.8% (4 - 18.5) 6.8% (6.4 - 7.5) 7.7% (6.8 - 9) 7.2% (6 - 11.4) 

2035 7% (4 - 20.1) 6.8% (6.4 - 7.6) 7.8% (6.8 - 9) 7.3% (6.1 - 12) 

2036 7.2% (4.1 - 21.8) 6.8% (6.4 - 7.7) 7.8% (6.9 - 9.1) 7.4% (6.1 - 12.6) 

2037 7.5% (4.1 - 23.7) 6.8% (6.4 - 7.8) 7.8% (6.9 - 9.1) 7.5% (6.1 - 13.3) 

2038 7.7% (4.1 - 25.5) 6.8% (6.3 - 7.8) 7.8% (6.9 - 9.1) 7.6% (6.1 - 13.9) 

2039 7.9% (4.2 - 27.5) 6.9% (6.2 - 7.9) 7.9% (6.9 - 9.3) 7.7% (6.2 - 14.6) 

2040 8.1% (4.2 - 29.5) 6.9% (6.1 - 7.9) 7.9% (7 - 9.4) 7.8% (6.2 - 15.4) 

Spain 

2023 21.3% 19.4% (19.1 - 19.9) 15.4% (14.3 - 16.5) 18.7% (18.2 - 19.1) 

2024 21.3% 19% (18.6 - 19.5) 15.7% (14.4 - 16.9) 18.7% (18.1 - 19.1) 

2025 21.3% 18.6% (18.1 - 19.1) 15.9% (14.5 - 17.2) 18.6% (18 - 19.1) 

2026 21.3% 17.4% (16.8 - 17.9) 15.8% (14.3 - 17.2) 18.2% (17.6 - 18.8) 

2027 21.3% 17.3% (16.7 - 17.9) 15.8% (14.4 - 17.2) 18.2% (17.6 - 18.8) 

2028 21.3% 17.3% (16.7 - 17.9) 15.8% (14.3 - 17.2) 18.2% (17.6 - 18.8) 

2029 21.3% 17.2% (16.6 - 17.9) 15.9% (14.5 - 17.3) 18.2% (17.6 - 18.8) 

2030 21.3% 16.8% (16.1 - 17.5) 16.1% (14.6 - 17.5) 18.1% (17.5 - 18.9) 

2031 21.3% 16.1% (15.4 - 16.8) 15.4% (14 - 16.7) 17.6% (17.1 - 18.5) 

2032 21.3% 16% (15.3 - 16.7) 15.3% (13.9 - 16.6) 17.6% (17 - 18.5) 

2033 21.3% 15.6% (14.9 - 16.4) 13.4% (12 - 14.6) 16.8% (16.2 - 17.5) 

2034 21.3% 15.6% (14.8 - 16.3) 13.2% (11.9 - 14.4) 16.7% (16.2 - 17.4) 

2035 21.3% 15.3% (14.6 - 16.1) 13.1% (11.8 - 14.4) 16.6% (16.1 - 17.4) 

2036 21.3% 15.2% (14.4 - 15.9) 13% (11.7 - 14.1) 16.5% (16 - 17.3) 

2037 21.3% 15% (14.2 - 15.7) 12.9% (11.7 - 14.1) 16.4% (15.9 - 17.3) 

2038 21.3% 14.9% (14.2 - 15.6) 12.9% (11.7 - 14.1) 16.4% (15.9 - 17.3) 

2039 21.3% 14.8% (14.1 - 15.5) 12.7% (11.5 - 13.8) 16.3% (15.8 - 17.2) 

2040 21.3% 14.7% (14 - 15.4) 12.6% (11.4 - 13.8) 16.3% (15.7 - 17.2) 

Finland 

2023 10.7% 8.9% (7.7 - 9.8) 6.3% (5.7 - 6.7) 8.6% (8.1 - 9) 

2024 10.5% 8.7% (7.5 - 9.6) 6.3% (5.7 - 6.8) 8.5% (8 - 8.9) 

2025 10.4% 8.6% (7.5 - 9.5) 6.4% (5.8 - 6.9) 8.5% (8 - 8.9) 

2026 10.3% 8.8% (7.6 - 9.7) 6.5% (6 - 7) 8.5% (8.1 - 9) 

2027 10.2% 8.8% (7.5 - 9.6) 6.6% (6 - 7.2) 8.5% (8.1 - 8.9) 

2028 10.2% 8.8% (7.6 - 9.7) 6.8% (6.2 - 7.3) 8.6% (8.1 - 9) 



 

Version 01    
106 

 Exponential smoothing Random forest XGBoost Ensemble 

2029 10.1% 8.8% (7.6 - 9.7) 6.8% (6.2 - 7.3) 8.5% (8.1 - 9) 

2030 10.1% 8.8% (7.6 - 9.7) 6.8% (6.3 - 7.4) 8.5% (8.1 - 9) 

2031 10.1% 8.8% (7.6 - 9.7) 6.9% (6.3 - 7.5) 8.6% (8.1 - 9) 

2032 10% 8.8% (7.5 - 9.7) 6.9% (6.3 - 7.5) 8.6% (8.1 - 9) 

2033 10% 8.9% (7.5 - 9.8) 6.9% (6.3 - 7.5) 8.6% (8.1 - 9) 

2034 10% 8.8% (7.5 - 9.8) 6.9% (6.3 - 7.5) 8.5% (8.1 - 9) 

2035 10% 8.8% (7.5 - 9.8) 6.9% (6.3 - 7.5) 8.5% (8.1 - 9) 

2036 10% 8.8% (7.4 - 9.7) 6.9% (6.3 - 7.5) 8.5% (8 - 9) 

2037 10% 8.8% (7.4 - 9.7) 6.8% (6.3 - 7.4) 8.5% (8 - 8.9) 

2038 10% 8.8% (7.4 - 9.6) 6.8% (6.3 - 7.4) 8.5% (8 - 8.9) 

2039 10% 8.7% (7.3 - 9.6) 6.8% (6.2 - 7.4) 8.5% (8 - 8.9) 

2040 10% 8.7% (7.3 - 9.6) 6.7% (6.2 - 7.3) 8.4% (7.9 - 8.9) 

France 

2023 35.2% 25.8% (25 - 26.7) 11.8% (11.1 - 12.6) 24.2% (23.5 - 24.7) 

2024 36.6% 24.6% (23.8 - 25.7) 12% (11.3 - 12.8) 24.4% (24 - 24.9) 

2025 37.9% 23.7% (22.7 - 24.8) 11.7% (11 - 12.3) 24.4% (24 - 25) 

2026 39.1% 23% (22.1 - 24.1) 11.5% (10.8 - 12.2) 24.6% (24.1 - 25.5) 

2027 40.2% 22.6% (21.6 - 23.6) 11.2% (10.4 - 11.9) 24.7% (24.2 - 25.8) 

2028 41.2% 22.4% (21.4 - 23.4) 11.1% (10.4 - 11.8) 24.9% (24.5 - 26.3) 

2029 42% 22% (21 - 23.1) 11% (10.3 - 11.6) 25% (24.6 - 26.6) 

2030 42.8% 21.7% (20.7 - 22.8) 11% (10.3 - 11.6) 25.2% (24.7 - 27) 

2031 43.5% 21.2% (20.2 - 22.4) 10.9% (10.1 - 11.5) 25.2% (24.8 - 27.3) 

2032 44.1% 20.1% (19.1 - 21.2) 11.5% (10.6 - 12.2) 25.2% (24.8 - 27.9) 

2033 44.6% 20% (19 - 21.1) 11.5% (10.6 - 12.2) 25.4% (25 - 28.2) 

2034 45.1% 19.8% (18.8 - 20.9) 11.5% (10.5 - 12.2) 25.5% (25 - 28.4) 

2035 45.5% 19.7% (18.7 - 20.8) 11.4% (10.5 - 12.1) 25.6% (25.1 - 28.6) 

2036 45.9% 19.7% (18.7 - 20.7) 11.4% (10.5 - 12.1) 25.7% (25.2 - 28.8) 

2037 46.2% 20.1% (19.2 - 21.2) 10.8% (10.1 - 11.5) 25.8% (25.4 - 28.7) 

2038 46.5% 19.4% (18.4 - 20.4) 11.4% (10.5 - 12.1) 25.8% (25.3 - 29.1) 

2039 46.8% 19.3% (18.3 - 20.3) 11.5% (10.5 - 12.2) 25.9% (25.4 - 29.3) 

2040 47% 19.2% (18.2 - 20.3) 11.5% (10.5 - 12.2) 25.9% (25.5 - 29.4) 

Greece 

2023 39.3% (7.2 - 57.4) 33.6% (14.5 - 39.4) 31.9% (18.6 - 35.7) 35.1% (14 - 43.6) 

2024 40.5% (7.4 - 65.2) 31.9% (14.2 - 37.5) 31.7% (18.9 - 35.7) 34.9% (14.1 - 45) 

2025 42% (7.5 - 81) 30.9% (14.1 - 36.4) 31.5% (19.2 - 35.6) 35.1% (14.2 - 48) 

2026 43% (7.7 - 116.4) 29.6% (13.9 - 34.9) 31.5% (19.1 - 35.6) 35.1% (14.3 - 54.4) 

2027 43.9% (7.8 - 157.8) 28.3% (13.7 - 33.6) 31.4% (19.1 - 35.4) 35.1% (14.3 - 66.9) 
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2028 44.9% (7.9 - 209.4) 27.7% (13.8 - 32.9) 31.3% (19.2 - 35.3) 35.3% (14.4 - 87.1) 

2029 46% (8 - 263.6) 27.1% (13.8 - 32.2) 30.9% (19.1 - 35.1) 35.3% (14.3 - 107.4) 

2030 47.1% (8.1 - 327.5) 26.7% (13.8 - 31.6) 30.6% (19.2 - 34.8) 35.4% (14.3 - 137.5) 

2031 48.2% (8.2 - 427.2) 26.2% (13.8 - 30.9) 30.5% (19.3 - 34.4) 35.3% (14.3 - 174.2) 

2032 49.3% (8.3 - 549.1) 26.1% (13.8 - 30.6) 30.5% (19.3 - 34.5) 35.7% (14.4 - 204.8) 

2033 50.6% (8.4 - 636.3) 23.3% (13.5 - 26.7) 28.3% (18.6 - 32) 34.5% (14 - 245) 

2034 51.8% (8.5 - 786.7) 22.9% (13.5 - 26.2) 28.3% (18.6 - 32) 34.7% (14 - 303.2) 

2035 52.8% (8.7 - 957.7) 21.9% (13.3 - 25) 27.8% (18.3 - 31.5) 34.6% (13.9 - 334.5) 

2036 54.2% (8.9 - 1124.2) 20.6% (13 - 23.4) 25.6% (17.1 - 29.3) 33.9% (13.6 - 404.3) 

2037 55.5% (9 - 1335) 20% (12.7 - 22.6) 22.7% (15.4 - 25.8) 33.2% (13 - 483.5) 

2038 56.6% (9.2 - 1569.9) 19.5% (12.6 - 22.3) 22.4% (15.3 - 25.5) 33.2% (12.9 - 544.1) 

2039 57.4% (9.3 - 1749.2) 19.1% (12.4 - 21.7) 21.9% (15 - 25.1) 33.4% (12.6 - 593.6) 

2040 58% (9.4 - 2038) 18.7% (12.1 - 21.2) 21.1% (14.4 - 24.2) 33.4% (12.4 - 689.7) 

Croatia 

2023 22% 17.7% (17.1 - 18.4) 17.8% (15.6 - 19.1) 19.2% (18.3 - 20.1) 

2024 22% 16.7% (16 - 17.4) 17.6% (15.3 - 19.1) 18.8% (18 - 20) 

2025 22.1% 16.1% (15.4 - 16.9) 18% (16.5 - 19.4) 18.8% (18.1 - 20.2) 

2026 22.1% 15.9% (15.2 - 16.6) 18% (16.6 - 19.3) 18.7% (18.2 - 20.2) 

2027 22.1% 15.7% (15 - 16.5) 17.9% (16.5 - 19.2) 18.6% (18.1 - 20.2) 

2028 22.1% 15.7% (14.9 - 16.4) 16.7% (15.3 - 18) 18.2% (17.7 - 19.6) 

2029 22.1% 15.6% (14.8 - 16.5) 16.6% (15.2 - 17.9) 18.1% (17.6 - 19.6) 

2030 22.1% 15.5% (14.6 - 16.5) 16.3% (15 - 17.6) 18% (17.5 - 19.4) 

2031 22.1% 15% (14.2 - 16) 15.5% (14.1 - 16.8) 17.6% (17.1 - 19) 

2032 22.2% 14.8% (14.1 - 15.8) 15.5% (14.1 - 16.7) 17.5% (17 - 19) 

2033 22.2% 14.5% (13.7 - 15.5) 14.7% (13.4 - 15.9) 17.2% (16.6 - 18.6) 

2034 22.2% 14.3% (13.5 - 15.3) 13.3% (11.9 - 14.5) 16.6% (16.1 - 18) 

2035 22.2% 14.1% (13.3 - 15.1) 13.2% (11.7 - 14.3) 16.5% (15.9 - 17.8) 

2036 22.2% 14.1% (13.3 - 15.1) 12.9% (11.5 - 14) 16.4% (15.8 - 17.7) 

2037 22.2% 14.1% (13.3 - 15) 12.8% (11.4 - 14) 16.4% (15.8 - 17.7) 

2038 22.2% 14.1% (13.3 - 15) 12.8% (11.4 - 14) 16.4% (15.8 - 17.7) 

2039 22.2% 14.2% (13.4 - 15.1) 12.9% (11.5 - 14) 16.4% (15.9 - 17.7) 

2040 22.2% 14.2% (13.4 - 15.1) 12.9% (11.5 - 14) 16.5% (15.9 - 17.7) 

Hungary 

2023 7.7% 8.8% (8.5 - 9) 12.7% (11.8 - 13.6) 9.7% (9.4 - 10.3) 

2024 7.6% 8.5% (8.2 - 8.8) 12.7% (11.8 - 13.6) 9.6% (9.3 - 10.3) 

2025 7.5% 8.5% (8.2 - 8.8) 12.6% (11.7 - 13.6) 9.6% (9.2 - 10.2) 

2026 7.4% 8.7% (8.4 - 9.1) 12.6% (11.7 - 13.6) 9.6% (9.2 - 10.2) 
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2027 7.4% 8.8% (8.4 - 9.1) 12.5% (11.6 - 13.5) 9.6% (9.2 - 10.1) 

2028 7.3% 9.1% (8.7 - 9.4) 12% (11.1 - 12.9) 9.5% (9.1 - 9.9) 

2029 7.3% 9.1% (8.8 - 9.5) 11.9% (11 - 12.8) 9.4% (9.1 - 9.8) 

2030 7.2% 9.3% (8.9 - 9.7) 11.3% (10.4 - 12.2) 9.3% (8.9 - 9.6) 

2031 7.2% 9.4% (9 - 9.8) 10.3% (9.4 - 11.2) 8.9% (8.6 - 9.3) 

2032 7.2% 9.5% (9.1 - 9.9) 10.3% (9.5 - 11.3) 9% (8.6 - 9.3) 

2033 7.1% 9.6% (9.2 - 10) 10.6% (9.7 - 11.8) 9.1% (8.7 - 9.5) 

2034 7.1% 9.8% (9.3 - 10.2) 10.6% (9.7 - 11.8) 9.2% (8.7 - 9.6) 

2035 7.1% 9.8% (9.4 - 10.2) 10.6% (9.6 - 11.7) 9.1% (8.7 - 9.6) 

2036 7.1% 9.8% (9.3 - 10.2) 10.6% (9.7 - 11.8) 9.1% (8.7 - 9.6) 

2037 7.1% 9.9% (9.5 - 10.3) 10.6% (9.7 - 11.8) 9.2% (8.7 - 9.6) 

2038 7% 10.1% (9.7 - 10.5) 10.7% (9.8 - 11.9) 9.3% (8.8 - 9.7) 

2039 7% 10.1% (9.7 - 10.6) 10.8% (9.9 - 12) 9.3% (8.8 - 9.7) 

2040 7% 10.2% (9.8 - 10.7) 10.8% (9.9 - 12) 9.3% (8.8 - 9.7) 

Ireland 

2023 22.7% 18.7% (18.3 - 19.2) 14.6% (13 - 16) 18.7% (18.1 - 19.2) 

2024 23.2% 18% (17.5 - 18.6) 14.4% (12.9 - 15.7) 18.5% (18 - 19.1) 

2025 23.6% 17.7% (17.2 - 18.3) 13.8% (12.4 - 15.1) 18.4% (17.9 - 18.9) 

2026 23.9% 17.3% (16.7 - 17.9) 13.5% (12.1 - 14.8) 18.3% (17.7 - 18.9) 

2027 24.2% 16.7% (16.1 - 17.3) 12.3% (11 - 13.6) 17.7% (17.2 - 18.4) 

2028 24.4% 16.5% (15.9 - 17.2) 11.6% (10.5 - 12.7) 17.5% (17.1 - 18.2) 

2029 24.5% 16.4% (15.8 - 17.1) 11.5% (10.3 - 12.7) 17.5% (17 - 18.2) 

2030 24.7% 16.2% (15.7 - 16.9) 12.4% (11.3 - 13.4) 17.8% (17.3 - 18.7) 

2031 24.8% 15.6% (15 - 16.3) 12.8% (11.7 - 14) 17.7% (17.3 - 18.9) 

2032 24.9% 15.3% (14.7 - 16) 12.9% (11.8 - 14.2) 17.7% (17.2 - 19) 

2033 24.9% 15.1% (14.5 - 15.8) 12.9% (11.8 - 14.3) 17.7% (17.2 - 19) 

2034 25% 14.8% (14.3 - 15.5) 12.9% (11.7 - 14.5) 17.6% (17.1 - 19.1) 

2035 25% 14.9% (14.3 - 15.5) 13.1% (12 - 14.7) 17.7% (17.2 - 19.1) 

2036 25.1% 14.9% (14.2 - 15.5) 13.1% (11.9 - 14.7) 17.7% (17.2 - 19.1) 

2037 25.1% 14.9% (14.2 - 15.5) 13.2% (11.9 - 14.8) 17.8% (17.2 - 19.2) 

2038 25.1% 14.8% (14.2 - 15.4) 13.2% (12 - 14.9) 17.8% (17.2 - 19.3) 

2039 25.1% 14.7% (14.1 - 15.2) 13.4% (12.1 - 15) 17.8% (17.2 - 19.4) 

2040 25.2% 14.7% (14.1 - 15.3) 13.8% (12.5 - 15.7) 17.9% (17.4 - 19.6) 

Iceland 

2023 19.3% (11.6 - 29.9) 17% (14.5 - 19.3) 8% (6.3 - 9) 14.7% (11.1 - 18.7) 

2024 20.9% (12.2 - 35.8) 16.6% (14 - 18.8) 7.9% (6.3 - 9) 15.1% (11.3 - 20.7) 

2025 22.3% (12.4 - 43.5) 16% (13.5 - 18.2) 7.8% (6.1 - 8.8) 15.3% (11.2 - 22.8) 
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2026 23.8% (12.7 - 53) 15.5% (13.1 - 17.6) 7.7% (6.1 - 8.6) 15.6% (11.2 - 26) 

2027 25.2% (12.9 - 64.3) 15.3% (12.9 - 17.4) 7.6% (6.1 - 8.6) 16.1% (11.2 - 29.5) 

2028 26.5% (13.1 - 77) 15.1% (12.7 - 17.1) 7.6% (6.1 - 8.5) 16.5% (11.2 - 33.9) 

2029 27.9% (13.2 - 90.8) 14.9% (12.5 - 16.8) 7.5% (6.1 - 8.3) 16.8% (11.1 - 38.7) 

2030 29.2% (13.4 - 108.3) 14.6% (12.3 - 16.5) 7.3% (6.1 - 8.2) 17.2% (11.1 - 44.1) 

2031 30.6% (13.6 - 127.9) 14.4% (12.1 - 16.2) 7.2% (6 - 8) 17.6% (11.1 - 50.5) 

2032 32.1% (13.9 - 148.9) 14.1% (11.8 - 16) 7.1% (6 - 7.9) 17.9% (11 - 57.5) 

2033 33.6% (14.1 - 172.1) 14.1% (11.7 - 15.9) 7.1% (6 - 7.9) 18.4% (11 - 65.3) 

2034 34.9% (14.4 - 197.8) 14% (11.6 - 15.8) 7.1% (6 - 7.9) 18.9% (11.1 - 73.6) 

2035 36.4% (14.6 - 225.9) 13.9% (11.5 - 15.6) 7% (5.9 - 7.8) 19.4% (11.1 - 82.9) 

2036 37.7% (14.7 - 256.6) 13.8% (11.4 - 15.5) 6.8% (5.7 - 7.5) 19.8% (11.1 - 92.9) 

2037 39.1% (14.9 - 289.9) 13.8% (11.4 - 15.5) 6.8% (5.7 - 7.6) 20.3% (11.2 - 103.5) 

2038 40.6% (15 - 324.7) 13.7% (11.3 - 15.4) 6.8% (5.7 - 7.6) 20.7% (11.3 - 115.1) 

2039 42% (15.1 - 361.8) 13.6% (11.3 - 15.4) 6.8% (5.8 - 7.6) 21.2% (11.4 - 128.1) 

2040 43.5% (15.1 - 401.4) 13.5% (11.1 - 15.2) 6.8% (5.8 - 7.6) 21.7% (11.5 - 142) 

Italy 

2023 11.9% 12.6% (12.3 - 12.9) 16.4% (15.1 - 17.9) 13.7% (13.2 - 14.4) 

2024 12.1% 12.6% (12.3 - 13) 16.3% (15 - 17.8) 13.7% (13.2 - 14.4) 

2025 12.2% 12.5% (12.2 - 12.9) 15.3% (14.1 - 16.9) 13.4% (12.9 - 14) 

2026 12.3% 12.5% (12.2 - 12.9) 15% (13.7 - 16.5) 13.3% (12.8 - 14) 

2027 12.5% 12.4% (12.1 - 12.9) 13.1% (12 - 14.4) 12.7% (12.3 - 13.2) 

2028 12.6% 12.4% (12.1 - 12.9) 12.9% (11.9 - 14.2) 12.7% (12.2 - 13.2) 

2029 12.7% 12.4% (12 - 12.8) 12.9% (11.9 - 14.2) 12.7% (12.3 - 13.2) 

2030 12.9% 12.4% (12 - 12.9) 12.8% (11.8 - 14.2) 12.7% (12.3 - 13.2) 

2031 13% 12.4% (12 - 12.9) 12.6% (11.6 - 14) 12.7% (12.3 - 13.2) 

2032 13.1% 12.5% (12 - 13) 12.6% (11.6 - 13.9) 12.7% (12.4 - 13.3) 

2033 13.2% 12.4% (12 - 13.1) 12.4% (11.4 - 13.7) 12.7% (12.3 - 13.2) 

2034 13.3% 12.4% (12 - 13.1) 12.4% (11.4 - 13.7) 12.7% (12.3 - 13.2) 

2035 13.4% 12.4% (11.9 - 13) 12.2% (11.2 - 13.6) 12.7% (12.3 - 13.2) 

2036 13.5% 12.4% (11.9 - 13) 12.3% (11.2 - 13.6) 12.7% (12.3 - 13.3) 

2037 13.6% 12.4% (11.9 - 13) 12.8% (11.8 - 14.3) 13% (12.5 - 13.5) 

2038 13.7% 12.4% (11.9 - 13) 12.9% (11.9 - 14.3) 13% (12.6 - 13.6) 

2039 13.8% 12.4% (12 - 13.1) 14.7% (13.4 - 16.3) 13.7% (13.2 - 14.5) 

2040 13.9% 12.4% (12 - 13.1) 14.8% (13.5 - 16.4) 13.7% (13.2 - 14.5) 

Lithuania 

2023 9.1% 10.1% (9.6 - 10.5) 14.8% (12.3 - 16.3) 11.4% (10.4 - 12.1) 

2024 9.1% 10.1% (9.6 - 10.6) 14.9% (12.3 - 16.4) 11.4% (10.4 - 12.2) 
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2025 9.2% 10% (9.2 - 10.6) 14.3% (11.8 - 15.9) 11.2% (10.1 - 12) 

2026 9.2% 10.2% (9.4 - 10.8) 15% (12.1 - 16.8) 11.5% (10.3 - 12.5) 

2027 9.2% 10.4% (9.5 - 11) 12.9% (10.7 - 14.7) 10.9% (9.8 - 11.6) 

2028 9.3% 10.5% (9.8 - 11.1) 12.7% (10.8 - 14.5) 10.9% (10 - 11.5) 

2029 9.3% 10.6% (10.1 - 11.1) 12.5% (10.6 - 14.2) 10.8% (10.1 - 11.5) 

2030 9.3% 10.7% (10.1 - 11.2) 12.4% (10.5 - 14.1) 10.8% (10.1 - 11.5) 

2031 9.3% 10.7% (10.1 - 11.2) 12.4% (10.5 - 14.1) 10.8% (10.1 - 11.5) 

2032 9.3% 10.7% (10.1 - 11.2) 12.5% (10.6 - 14.2) 10.8% (10.1 - 11.5) 

2033 9.3% 10.7% (10.2 - 11.3) 12.5% (10.6 - 14.2) 10.9% (10.1 - 11.6) 

2034 9.3% 10.8% (10.2 - 11.3) 12.5% (10.6 - 14.2) 10.9% (10.1 - 11.6) 

2035 9.4% 10.8% (10.2 - 11.3) 12.6% (10.6 - 14.3) 10.9% (10.1 - 11.6) 

2036 9.4% 10.9% (10.3 - 11.4) 12.7% (10.7 - 14.4) 11% (10.2 - 11.7) 

2037 9.4% 10.9% (10.3 - 11.5) 12.7% (10.7 - 14.4) 11% (10.2 - 11.7) 

2038 9.4% 11% (10.4 - 11.5) 12.7% (10.7 - 14.4) 11% (10.3 - 11.7) 

2039 9.4% 11% (10.4 - 11.6) 12.8% (10.7 - 14.5) 11.1% (10.3 - 11.7) 

2040 9.4% 11.1% (10.5 - 11.7) 12.8% (10.8 - 14.6) 11.1% (10.3 - 11.8) 

Luxembourg 

2023 11.2% (9.2 - 16.3) 11.9% (9.7 - 14.5) 11.7% (10.8 - 12.7) 11.6% (10.1 - 14.2) 

2024 11.2% (9.2 - 17.8) 12% (9.5 - 14.6) 11.6% (10.7 - 12.6) 11.6% (10 - 14.6) 

2025 11.3% (9.1 - 19) 12.5% (10 - 15) 11.6% (10.7 - 12.6) 11.8% (10.1 - 15.3) 

2026 11.3% (9.1 - 20.5) 12.3% (9.8 - 14.8) 11.5% (10.6 - 12.5) 11.7% (10 - 15.6) 

2027 11.4% (9.1 - 21.9) 12.1% (9 - 14.9) 11.4% (10.6 - 12.4) 11.6% (9.8 - 16.2) 

2028 11.4% (9 - 23) 11.6% (8.9 - 14.3) 11.4% (10.6 - 12.4) 11.5% (9.7 - 16.5) 

2029 11.4% (9 - 24.8) 11.6% (8.9 - 14.1) 11.4% (10.6 - 12.4) 11.5% (9.8 - 16.7) 

2030 11.5% (9 - 26.6) 11.5% (9 - 14) 11.3% (10.5 - 12.3) 11.5% (9.7 - 17) 

2031 11.5% (9 - 28.5) 11.5% (9 - 13.9) 11.1% (10.3 - 11.9) 11.4% (9.7 - 17.6) 

2032 11.5% (8.9 - 29.5) 11.5% (8.9 - 13.9) 11% (10.2 - 11.8) 11.4% (9.6 - 18.2) 

2033 11.6% (8.9 - 30.5) 11.5% (9 - 13.9) 11% (10.2 - 11.9) 11.4% (9.7 - 18.8) 

2034 11.6% (8.9 - 31.4) 11.5% (9 - 14.1) 11.2% (10.3 - 12.1) 11.5% (9.7 - 19.7) 

2035 11.6% (8.8 - 33.3) 11.4% (9 - 14) 11.2% (10.2 - 12.1) 11.4% (9.7 - 19.7) 

2036 11.6% (8.8 - 34.4) 11.4% (9 - 13.9) 11.2% (10.3 - 12.1) 11.4% (9.7 - 19.9) 

2037 11.7% (8.8 - 35.4) 11.3% (9 - 13.7) 11.2% (10.3 - 12.1) 11.4% (9.7 - 20.2) 

2038 11.7% (8.7 - 36.3) 11.2% (9 - 13.6) 11.2% (10.3 - 12.1) 11.4% (9.7 - 20.8) 

2039 11.7% (8.7 - 37.4) 11.1% (9 - 13.4) 11.3% (10.3 - 12.1) 11.4% (9.7 - 21.3) 

2040 11.7% (8.7 - 38.6) 11.1% (9.1 - 13.4) 11.3% (10.3 - 12.2) 11.4% (9.7 - 21.5) 

Latvia 

2023 7.8% (6.4 - 9.1) 5.9% (5.4 - 6.4) 13.7% (11.4 - 16) 9.2% (8.2 - 11.1) 



 

Version 01    
111 

 Exponential smoothing Random forest XGBoost Ensemble 

2024 7.8% (6.2 - 9.1) 6.7% (6 - 7.2) 14.8% (12 - 17) 9.8% (8.6 - 11.5) 

2025 7.7% (6 - 9.2) 7.2% (6.6 - 7.8) 15.2% (12.4 - 17.6) 10.1% (8.8 - 11.8) 

2026 7.7% (5.8 - 9.3) 7.2% (6.6 - 7.8) 15.2% (12.3 - 17.4) 10.1% (8.8 - 11.7) 

2027 7.6% (5.6 - 9.4) 7.5% (7 - 8.1) 14.4% (11.7 - 16.7) 9.8% (8.7 - 11.4) 

2028 7.6% (5.4 - 9.5) 7.7% (7.2 - 8.3) 15% (12.2 - 17.5) 10.1% (8.9 - 11.7) 

2029 7.6% (5.2 - 9.5) 7.8% (7.3 - 8.3) 15.2% (12.2 - 17.7) 10.2% (8.9 - 11.7) 

2030 7.5% (5 - 9.5) 7.8% (7.3 - 8.4) 16% (12.5 - 18.7) 10.4% (9 - 12.2) 

2031 7.5% (4.8 - 9.6) 8.4% (7.9 - 9.1) 15.9% (13.8 - 18.4) 10.7% (9.4 - 12.2) 

2032 7.5% (4.6 - 9.6) 8.7% (8.1 - 9.4) 16% (14 - 18.3) 10.8% (9.6 - 12.2) 

2033 7.5% (4.5 - 9.7) 9% (8.3 - 9.8) 15.8% (13.9 - 18.1) 10.8% (9.7 - 12.1) 

2034 7.4% (4.4 - 9.8) 9% (8.3 - 9.9) 13.5% (11.9 - 15.3) 10% (8.8 - 11.3) 

2035 7.4% (4.3 - 9.8) 9% (8.3 - 9.9) 13.3% (11.7 - 15.1) 9.9% (8.7 - 11.2) 

2036 7.4% (4.2 - 9.9) 8.9% (8.3 - 10.1) 13.1% (11.6 - 14.9) 9.8% (8.6 - 11.1) 

2037 7.4% (4.1 - 9.9) 8.9% (8.3 - 10.1) 12.8% (11.2 - 14.6) 9.7% (8.5 - 11) 

2038 7.3% (4 - 10) 8.9% (8.3 - 10.2) 12.6% (11.1 - 14.5) 9.7% (8.4 - 11) 

2039 7.3% (3.9 - 10) 8.9% (8.3 - 10.2) 12.7% (11.1 - 14.5) 9.7% (8.4 - 11) 

2040 7.3% (3.8 - 10.1) 9% (8.4 - 10.3) 12.7% (11.1 - 14.5) 9.7% (8.4 - 11.1) 

Netherlands 

2023 8.1% 5.8% (5.6 - 5.9) 6% (5.5 - 6.3) 6.6% (6.5 - 7.1) 

2024 9.5% 5.7% (5.6 - 5.9) 6.1% (5.6 - 6.5) 7.1% (6.9 - 7.8) 

2025 11.1% 5.9% (5.7 - 6) 6.1% (5.6 - 6.5) 7.7% (7.5 - 8.7) 

2026 12.9% 5.9% (5.8 - 6.1) 6.4% (5.9 - 6.8) 8.4% (8.2 - 9.7) 

2027 14.9% 6% (5.9 - 6.2) 6.6% (6 - 7.1) 9.2% (8.9 - 10.8) 

2028 17% 6.1% (5.9 - 6.2) 6.6% (6 - 7.1) 9.9% (9.7 - 11.9) 

2029 19.4% 6.1% (5.9 - 6.3) 6.6% (6 - 7.1) 10.7% (10.5 - 13.1) 

2030 22% 6.1% (5.9 - 6.3) 6.6% (6 - 7.1) 11.6% (11.3 - 14.4) 

2031 24.8% 6% (5.8 - 6.3) 6.6% (6 - 7.2) 12.5% (12.2 - 15.8) 

2032 27.8% 6.1% (5.8 - 6.3) 6.6% (6 - 7.2) 13.5% (13.3 - 17.3) 

2033 31.1% 6.1% (5.8 - 6.3) 6.6% (6 - 7.2) 14.6% (14.3 - 18.9) 

2034 34.6% 6.1% (5.8 - 6.3) 6.6% (6 - 7.2) 15.8% (15.5 - 20.7) 

2035 38.3% 6.1% (5.8 - 6.3) 6.6% (6 - 7.2) 17% (16.7 - 22.5) 

2036 42.2% 6.1% (5.8 - 6.3) 6.6% (6 - 7.2) 18.3% (18.1 - 24.5) 

2037 46.5% 6.1% (5.8 - 6.4) 6.7% (6 - 7.2) 19.8% (19.5 - 26.6) 

2038 50.9% 6.2% (5.9 - 6.4) 6.7% (6 - 7.2) 21.3% (21 - 28.9) 

2039 55.6% 6.2% (5.9 - 6.4) 6.7% (6 - 7.2) 22.8% (22.6 - 31.2) 

2040 60.6% 6.3% (6 - 6.6) 6.8% (6.2 - 7.4) 24.6% (24.4 - 33.8) 

Norway 
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2023 7.8% 6.6% (6.5 - 6.7) 5.4% (5 - 5.8) 6.6% (6.5 - 6.8) 

2024 8.3% 6.6% (6.5 - 6.8) 5.6% (5.1 - 5.9) 6.9% (6.7 - 7) 

2025 8.8% 6.5% (6.4 - 6.7) 5.7% (5.2 - 6) 7% (6.8 - 7.3) 

2026 9.3% 6.7% (6.5 - 6.8) 6.2% (5.7 - 6.6) 7.4% (7.2 - 7.8) 

2027 9.8% 6.9% (6.8 - 7.1) 6.4% (5.9 - 6.8) 7.7% (7.5 - 8.2) 

2028 10.3% 7.1% (6.9 - 7.2) 6.6% (6.1 - 7) 8% (7.8 - 8.5) 

2029 10.8% 6.9% (6.7 - 7.1) 6.7% (6.1 - 7) 8.1% (7.9 - 8.8) 

2030 11.4% 6.9% (6.7 - 7.1) 6.7% (6.2 - 7.1) 8.3% (8.1 - 9.1) 

2031 11.9% 6.9% (6.7 - 7.1) 6.9% (6.3 - 7.3) 8.6% (8.4 - 9.5) 

2032 12.5% 6.9% (6.8 - 7.2) 7.3% (6.6 - 7.8) 8.9% (8.7 - 10) 

2033 13% 7% (6.8 - 7.2) 7.3% (6.6 - 7.9) 9.1% (8.9 - 10.3) 

2034 13.6% 7% (6.8 - 7.2) 7.3% (6.6 - 7.9) 9.3% (9.1 - 10.6) 

2035 14.2% 7% (6.8 - 7.2) 7.3% (6.6 - 7.9) 9.5% (9.3 - 10.9) 

2036 14.8% 7% (6.8 - 7.2) 7.3% (6.6 - 7.8) 9.7% (9.5 - 11.2) 

2037 15.4% 6.9% (6.6 - 7.1) 7.3% (6.6 - 7.8) 9.9% (9.6 - 11.4) 

2038 16% 6.9% (6.6 - 7.1) 7.3% (6.6 - 7.8) 10.1% (9.8 - 11.7) 

2039 16.6% 6.9% (6.6 - 7.1) 7.3% (6.6 - 7.8) 10.3% (10 - 12.1) 

2040 17.3% 6.8% (6.6 - 7.1) 7.3% (6.6 - 7.8) 10.5% (10.2 - 12.4) 

Poland 

2023 13.8% (11.9 - 15.7) 13.8% (13.3 - 14.3) 17.6% (16.4 - 19) 15.1% (14.2 - 16.2) 

2024 13.5% (10.9 - 15.5) 13.2% (12.6 - 13.8) 16.3% (15.2 - 17.8) 14.4% (13.3 - 15.5) 

2025 13.1% (10.2 - 15.3) 13% (12.5 - 13.5) 17.1% (16 - 18.6) 14.5% (13.3 - 15.6) 

2026 12.8% (9.5 - 15.1) 12.5% (12 - 13.1) 15.9% (14.7 - 17.3) 13.8% (12.5 - 15) 

2027 12.5% (8.9 - 15) 12.4% (11.8 - 13.1) 15.8% (14.5 - 17.2) 13.6% (12.3 - 14.9) 

2028 12.1% (8.5 - 14.9) 12.4% (11.8 - 13.1) 14.2% (12.7 - 15.4) 13% (11.4 - 14.2) 

2029 11.9% (8.1 - 14.8) 12.5% (11.8 - 13.3) 13.3% (11.7 - 14.7) 12.6% (11.1 - 13.9) 

2030 11.6% (7.7 - 14.7) 12.7% (11.9 - 13.5) 13.2% (11.5 - 14.6) 12.6% (11 - 13.9) 

2031 11.4% (7.3 - 14.7) 12.7% (11.9 - 13.6) 13.2% (11.5 - 14.4) 12.5% (10.9 - 13.9) 

2032 11.2% (7 - 14.6) 12.9% (12.2 - 13.7) 13.2% (11.4 - 14.5) 12.5% (10.8 - 13.9) 

2033 11% (6.8 - 14.6) 12.9% (12.2 - 13.7) 13.2% (11.4 - 14.5) 12.4% (10.8 - 13.9) 

2034 10.8% (6.7 - 14.6) 13% (12.3 - 13.7) 13.1% (11.3 - 14.5) 12.4% (10.7 - 13.9) 

2035 10.7% (6.5 - 14.6) 13% (12.3 - 13.8) 13.2% (11.3 - 14.5) 12.3% (10.6 - 13.9) 

2036 10.5% (6.4 - 14.6) 12.9% (12.2 - 13.8) 13.2% (11.4 - 14.6) 12.3% (10.5 - 13.9) 

2037 10.4% (6.3 - 14.6) 12.9% (12.2 - 13.8) 13.2% (11.3 - 14.6) 12.2% (10.4 - 13.9) 

2038 10.2% (6.2 - 14.6) 12.9% (12.2 - 13.7) 13.2% (11.2 - 14.6) 12.2% (10.3 - 13.9) 

2039 10.1% (6.1 - 14.6) 12.9% (12.2 - 13.7) 13.2% (11.1 - 14.6) 12.1% (10.2 - 13.9) 

2040 10% (5.9 - 14.6) 12.9% (12.2 - 13.7) 13.2% (11.1 - 14.6) 12.1% (10.2 - 13.9) 
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Portugal 

2023 8.2% 10.5% (10.3 - 11) 16.3% (14 - 17.9) 11.7% (11 - 12.6) 

2024 7.7% 10.5% (10.3 - 11) 16.5% (14.2 - 18.2) 11.6% (10.9 - 12.4) 

2025 7.2% 10.4% (10.2 - 10.9) 16.4% (14.2 - 18.1) 11.4% (10.7 - 12.1) 

2026 6.9% 10.4% (10.1 - 10.9) 16.3% (14.2 - 18.1) 11.2% (10.6 - 12) 

2027 6.7% 10.3% (10 - 10.8) 16.3% (14.2 - 18.1) 11.1% (10.5 - 11.9) 

2028 6.5% 10.3% (10 - 10.8) 16.2% (14.3 - 18) 11% (10.4 - 11.8) 

2029 6.4% 10.7% (10.4 - 11.1) 15.4% (13.7 - 17.1) 10.8% (10.2 - 11.4) 

2030 6.2% 10.6% (10.3 - 11.1) 15.3% (13.6 - 17) 10.8% (10.2 - 11.4) 

2031 6.1% 10.7% (10.3 - 11.1) 14.4% (12.8 - 16.1) 10.4% (9.8 - 11) 

2032 6.1% 10.6% (10.3 - 11.1) 12.9% (11.5 - 14.5) 9.9% (9.2 - 10.4) 

2033 6% 10.6% (10.3 - 11.1) 12.8% (11.4 - 14.4) 9.8% (9.1 - 10.3) 

2034 6% 10.6% (10.2 - 11.1) 12.5% (11.2 - 14.2) 9.7% (9 - 10.3) 

2035 5.9% 10.7% (10.3 - 11.1) 12.4% (11 - 14.1) 9.7% (8.9 - 10.2) 

2036 5.9% 10.8% (10.4 - 11.2) 12.4% (11 - 14.1) 9.7% (8.9 - 10.2) 

2037 5.9% 10.9% (10.5 - 11.3) 12.4% (10.8 - 14.2) 9.7% (8.8 - 10.3) 

2038 5.9% 10.9% (10.5 - 11.3) 12.4% (10.8 - 14.2) 9.7% (8.8 - 10.3) 

2039 5.8% 10.9% (10.5 - 11.3) 12.4% (10.8 - 14.2) 9.7% (8.9 - 10.3) 

2040 5.8% 10.9% (10.5 - 11.3) 12.4% (10.9 - 14.3) 9.7% (8.8 - 10.3) 

Slovenia 

2023 7.6% 7.9% (7.7 - 8) 9.5% (8.7 - 10.3) 8.3% (8 - 8.7) 

2024 7.3% 8.1% (7.9 - 8.3) 9.1% (8.4 - 10) 8.2% (7.9 - 8.5) 

2025 7.1% 8.2% (8 - 8.5) 9.3% (8.5 - 10.1) 8.2% (7.9 - 8.5) 

2026 6.9% 8.5% (8.2 - 8.8) 9% (8.2 - 9.8) 8.1% (7.8 - 8.4) 

2027 6.7% 8.9% (8.5 - 9.2) 8.4% (7.7 - 9.2) 8% (7.5 - 8.3) 

2028 6.5% 8.9% (8.6 - 9.3) 8.6% (7.8 - 9.4) 8% (7.4 - 8.3) 

2029 6.3% 8.9% (8.5 - 9.2) 8.5% (7.8 - 9.3) 7.9% (7.3 - 8.2) 

2030 6.1% 8.9% (8.5 - 9.2) 8.4% (7.7 - 9.3) 7.8% (7.2 - 8.1) 

2031 6% 8.9% (8.5 - 9.2) 8.4% (7.6 - 9.2) 7.7% (7.1 - 8.1) 

2032 5.8% 8.9% (8.5 - 9.3) 8.4% (7.7 - 9.2) 7.7% (7 - 8) 

2033 5.7% 8.9% (8.6 - 9.3) 8.4% (7.7 - 9.2) 7.7% (6.9 - 8) 

2034 5.5% 9% (8.6 - 9.4) 8.4% (7.7 - 9.2) 7.6% (6.9 - 8) 

2035 5.4% 9% (8.6 - 9.4) 8.4% (7.7 - 9.2) 7.6% (6.8 - 7.9) 

2036 5.3% 9% (8.6 - 9.5) 8.4% (7.7 - 9.2) 7.5% (6.7 - 7.9) 

2037 5.1% 9.1% (8.6 - 9.5) 8.4% (7.7 - 9.2) 7.5% (6.7 - 7.9) 

2038 5% 9.1% (8.7 - 9.5) 8.4% (7.7 - 9.3) 7.5% (6.6 - 7.9) 

2039 4.9% 9.1% (8.7 - 9.6) 8.4% (7.7 - 9.3) 7.5% (6.6 - 7.8) 
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2040 4.8% 9.1% (8.7 - 9.5) 8.4% (7.7 - 9.3) 7.4% (6.5 - 7.8) 

Slovakia 

2023 10.1% (7.3 - 14.6) 10.8% (8.4 - 13.6) 17.4% (15.2 - 19.7) 12.9% (10.7 - 15.8) 

2024 9.8% (6.9 - 14.5) 10.6% (8.3 - 14.2) 17.1% (15 - 19.3) 12.6% (10.5 - 15.7) 

2025 9.7% (6.6 - 14.2) 10.5% (8 - 14.1) 16.8% (14.6 - 19.1) 12.4% (10.2 - 15.5) 

2026 9.5% (6.2 - 14.4) 10.5% (8 - 14.4) 18.5% (15.9 - 21.1) 12.9% (10.6 - 16.2) 

2027 9.3% (5.8 - 14.5) 10.4% (7.9 - 14.8) 18.4% (15.9 - 21.1) 12.8% (10.5 - 16) 

2028 9.1% (5.3 - 14.5) 10.5% (8.1 - 14.9) 18.2% (15.7 - 20.9) 12.7% (10.5 - 16) 

2029 9% (5 - 14.8) 11% (9 - 15.1) 17.3% (14.9 - 20.1) 12.5% (10.5 - 15.7) 

2030 8.9% (4.7 - 14.7) 11.5% (9.6 - 15.4) 17.7% (15.2 - 20.6) 12.8% (10.7 - 16.1) 

2031 8.7% (4.3 - 14.6) 11.5% (9.6 - 15) 16.7% (14.1 - 19.7) 12.4% (10.2 - 15.5) 

2032 8.6% (4.1 - 14.8) 11.7% (10 - 14.9) 14.9% (12.8 - 17.4) 11.7% (9.7 - 14.7) 

2033 8.5% (3.8 - 14.6) 12.1% (10.2 - 14.9) 15.4% (13.1 - 17.9) 12% (9.8 - 14.9) 

2034 8.3% (3.5 - 14.5) 12.4% (10.3 - 15.1) 15.5% (13.4 - 18.1) 12.1% (9.9 - 15) 

2035 8.2% (3.2 - 14.4) 12.8% (10.6 - 15.4) 15.5% (13.1 - 17.9) 12.1% (9.9 - 15) 

2036 8.1% (3 - 14.6) 13.1% (10.8 - 15.7) 15.6% (13.3 - 18) 12.2% (10 - 15.1) 

2037 8% (2.8 - 14.8) 13.4% (11.1 - 15.8) 15.6% (13.3 - 18) 12.2% (10 - 15.2) 

2038 7.9% (2.6 - 14.8) 13.7% (11.4 - 16) 15.7% (13.5 - 18.1) 12.4% (10.1 - 15.2) 

2039 7.8% (2.4 - 14.8) 13.9% (11.4 - 16) 15.8% (13.5 - 18.1) 12.4% (10.1 - 15.2) 

2040 7.7% (2.2 - 15) 14% (11.5 - 16.1) 15.8% (13.5 - 18.1) 12.4% (10.1 - 15.4) 

95% credible intervals are displayed between brackets, where applicable 

Based on antimicrobial resistance rates collected with ECDC's TESSy database 

 

Accuracy of antimicrobial resistance forecasts 

RMSE - Streptococcus pneumonia against broad-spectrum penicillins 

 Exponential smoothing Random forest XGBoost 

Austria 0.192 0.139 (0.128 - 0.145) 0.145 (0.124 - 0.171) 

Belgium 2.154 1.152 (1.047 - 1.187) 1.003 (0.997 - 1.009) 

Bulgaria 0.445 (0.293 - 0.661) 0.473 (0.28 - 0.685) 0.444 (0.335 - 0.602) 

Czechia 0.13 0.122 (0.087 - 0.176) 0.358 (0.306 - 0.412) 

Germany 0.119 0.125 (0.116 - 0.133) 0.117 (0.091 - 0.148) 

Denmark 0.241 0.25 (0.246 - 0.254) 0.236 (0.232 - 0.24) 

Estonia 0.27 (0.18 - 0.384) 0.124 (0.116 - 0.135) 0.366 (0.318 - 0.418) 

Spain 0.154 0.054 (0.043 - 0.101) 0.227 (0.186 - 0.346) 

Finland 0.19 0.215 (0.201 - 0.23) 0.451 (0.407 - 0.497) 
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France 0.068 0.406 (0.377 - 0.43) 0.845 (0.805 - 0.906) 

United Kingdom 0.119 0.032 (0.018 - 0.046) 0.025 (0.008 - 0.052) 

Greece 0.346 (0.11 - 0.871) 0.461 (0.228 - 0.741) 0.369 (0.183 - 0.912) 

Croatia 0.196 0.138 (0.116 - 0.199) 0.202 (0.166 - 0.284) 

Hungary 0.234 0.269 (0.251 - 0.283) 0.331 (0.274 - 0.371) 

Ireland 0.237 0.276 (0.261 - 0.291) 0.338 (0.292 - 0.384) 

Iceland 0.334 (0.218 - 0.629) 0.518 (0.388 - 0.691) 0.697 (0.534 - 0.897) 

Italy 0.093 0.103 (0.094 - 0.115) 0.381 (0.285 - 0.43) 

Lithuania 0.612 0.352 (0.3 - 0.367) 0.307 (0.26 - 0.35) 

Luxembourg 0.374 (0.269 - 0.549) 0.374 (0.315 - 0.519) 0.326 (0.271 - 0.461) 

Latvia 0.479 (0.431 - 0.756) 0.608 (0.577 - 0.638) 0.539 (0.487 - 0.586) 

Netherlands 0.359 0.233 (0.219 - 0.247) 0.115 (0.102 - 0.126) 

Norway 0.065 0.193 (0.182 - 0.203) 0.242 (0.212 - 0.267) 

Poland 0.374 (0.237 - 0.476) 0.187 (0.174 - 0.205) 0.166 (0.15 - 0.181) 

Portugal 0.121 0.121 (0.114 - 0.126) 0.24 (0.128 - 0.279) 

Slovenia 0.2 0.181 (0.178 - 0.185) 0.183 (0.177 - 0.194) 

Slovakia 0.557 (0.277 - 0.898) 0.534 (0.45 - 0.695) 0.35 (0.284 - 0.516) 

95% credible intervals are displayed between brackets, where applicable 

Based on antimicrobial resistance rates collected with ECDC's TESSy database 
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